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Abstract. We consider the problem of reconstructing near-perfect phy-
logenetic trees using binary character states (referred to as BNPP). A
perfect phylogeny assumes that every character mutates at most once in
the evolutionary tree, yielding an algorithm for binary character states
that is computationally efficient but not robust to imperfections in real
data. A near-perfect phylogeny relaxes the perfect phylogeny assumption
by allowing at most a constant number q of additional mutations. In this
paper, we develop an algorithm for constructing optimal phylogenies and
provide empirical evidence of its performance. The algorithm runs in time
O((72κ)qnm + nm2) where n is the number of taxa, m is the number of
characters and κ is the number of characters that share four gametes with
some other character. This is fixed parameter tractable when q and κ are
constants and significantly improves on the previous asymptotic bounds
by reducing the exponent to q. Furthermore, the complexity of the pre-
vious work makes it impractical and in fact no known implementation of
it exists. We implement our algorithm and demonstrate it on a selection
of real data sets, showing that it substantially outperforms its worst-
case bounds and yields far superior results to a commonly used heuristic
method in at least one case. Our results therefore describe the first prac-
tical phylogenetic tree reconstruction algorithm that finds guaranteed
optimal solutions while being easily implemented and computationally
feasible for data sets of biologically meaningful size and complexity.

1 Introduction

Reconstruction of evolutionary trees is a classical computational biology prob-
lem [9]. In the maximum parsimony (MP) model of this problem one seeks the
smallest tree to explain a set of observed organisms. Parsimony is a particularly
appropriate metric for trees representing short time scales, which makes it a good
choice for inferring evolutionary relationships among individuals within a single
species or a few closely related species. The intraspecific phylogeny problem has
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become especially important in studies of human genetics now that large-scale
genotyping and the availability of complete human genome sequences have made
it possible to identify millions of single nucleotide polymorphisms (SNPs) [18],
sites at which a single DNA base takes on two common variants.

Minimizing the length of a phylogeny is the problem of finding the most
parsimonious tree, a well known NP-complete problem [7]. Researchers have thus
focused on either sophisticated heuristics or solving optimally for special cases
(e.g. fixed parameter variants [1, 3, 13]). Previous attempts at such solutions for
the general parsimony problem have only produced theoretical results, yielding
algorithms too complicated for practical implementation. A large number of
related work has been published but it is impossible to mention all of them here.

Fernandez-Baca and Lagergren recently considered the problem of recon-
structing optimal near-perfect phylogenies [6], which assume that the size of the
optimal phylogeny is at most q larger than that of a perfect phylogeny for the
same input size. They developed an algorithm to find the most parsimonious
tree in time nmO(q)2O(q2s2), where s is the number of states per character, n
is the number of taxa and m is the number of characters. This bound may be
impractical for sizes of m to be expected from SNP data, even for moderate q.
Given the importance of SNP data, it would therefore be valuable to develop
methods able to handle large m for the special case of s = 2, a problem we call
Binary Near Perfect Phylogenetic tree reconstruction (BNPP).

Our Work: Here we present theoretical and practical results on the optimal
solution of the BNPP problem. We completely describe and analyze an intuitive
algorithm for the BNPP problem that has running time O((72κ)qnm + nm2),
where κ is the number of characters that violate the four gamete condition,
a test of perfectness of a data set explained below. Since κ ≤ m this result
significantly improves the prior running time by removing the big-oh from the
exponent. Furthermore, the complexity of the previous work would make prac-
tical implementation daunting; to our knowledge no implementation of it has
ever been attempted. Our results thus describe the first practical phylogenetic
tree reconstruction algorithm that finds guaranteed optimal solutions while be-
ing easily implemented and computationally feasible for data sets of biologically
meaningful size and complexity. We implement our algorithm and demonstrate
it on a selection of real mitochondrial, Y-chromosome and bacterial data sets,
showing that it substantially outperforms its worst-case bounds and yields far
superior results to a commonly used heuristic method in at least one case.

2 Preliminaries

A phylogenetic tree T is called perfect if for all states s and characters c, all taxa
having state s at character c lie in a connected component of the phylogeny.
Since the problem of reconstructing a perfect phylogeny is NP-complete [2, 17],
Gusfield considered an important special case when the number of states is
bounded by 2, called the binary perfect phylogeny problem (BPP). He showed



that the BPP problem can be solved in linear time [8]. The problem we consider
is an extension called the binary near perfect phylogeny reconstruction (BNPP).

In defining formal models for parsimony-based phylogeny construction, we
borrow definitions and notations from Fernandez-Baca and Lagergren [6]. The
input to the BNPP problem is an n × m matrix I where rows R represent taxa
and are strings over states. The columns C are referred to as characters. Thus,
every taxon r ∈ {0, 1}m. In a phylogenetic tree, or phylogeny, each vertex v
corresponds to a taxon and has an associated label l(v) ∈ {0, 1}m.

Definition 1. A phylogeny for a set of n taxa R is a tree T (V, E) with the
following properties:

1. if a taxon r ∈ R then r ∈ l(V (T ))
2. for all (u, v) ∈ E(T ), H(l(u), l(v)) = 1 where H is the Hamming distance

Definition 2. For a phylogeny T :

– length(T) = |E(T )|
– penalty(T ) = length(T ) − m
– vertex v of T is terminal if l(v) ∈ R and Steiner otherwise.

The BNPP problem: Given an integer q and an n × m input matrix I,
where each row(taxon) r ∈ {0, 1}m, find a phylogeny T such that length(T )
is minimized or declare NIL if all phylogenies have penalty larger than q. The
problem is equivalent to finding the minimum Steiner tree on a hyper-cube if the
optimal tree is at most q larger than the number of dimensions or declaring NIL

otherwise. The problem is fundamental and therefore expected to have diverse
applications besides phylogenies.

Definition 3. We define the following additional notations:

– r[i] ∈ {0, 1}: the state in character i of taxa r
– µ(e) : E(T ) → C: the character corresponding to edge e = (u, v) with the

property l(u)[µ(e)] 6= l(v)[µ(e)]

We say that an edge e mutates character c′ if µ(e) = c′. We will use the
following well known definition and lemma on phylogenies:

Definition 4. The set of gametes Gi,j for characters i, j is defined as: Gi,j =
{(k, l)|∃r ∈ R, r[i] = k, r[j] = l}. Two characters i, j ∈ C contain (all) four
gametes when |Gi,j | = 4.

Lemma 1. [8] The most parsimonious phylogeny for input I is not perfect if
and only if I contains the four-gamete property.

Input Assumptions: If no pair of characters in input I contains the four-
gamete property, we can use Gusfield’s elegant algorithm [8] to reconstruct a
perfect phylogeny. We assume that the all zeros taxa is present in the input.
If not, using our freedom of labeling, we convert the data so that it contains



the same information with the all zeros taxa (see section 2.2 of Eskin et al [4]
for details). We now remove any character that contains only one state. Such
characters do not mutate in the whole phylogeny and are therefore useless in any
phylogeny reconstruction. We now repeat the following preprocessing step. For
every pair of characters c′, c′′ if |Gc′,c′′ | = 2, we (arbitrarily) remove character
c′′. After preprocessing, we have the following lemma:

Lemma 2. For every pair of characters c′, c′′, |Gc′,c′′ | ≥ 3.

We will assume that the above lemma holds on the input matrix for the
rest of the paper. Note that such characters c′, c′′ are identical (after possibly
relabeling one character) and are usually referred to as non-informative. It is
not hard to show that this preprocessing step does not change the correctness
or running time of our algorithm.
Conflict Graph G: The conflict graph G, introduced by Gusfield et al. [11], is
used to represent the imperfectness of the input in a graph. Each vertex v ∈ V (G)
of the graph represents a character c(v) ∈ C. An edge (u, v) is added if and only
if all the four gametes are present in c(u) and c(v). Let V C be any minimum
vertex cover of G. Damaschke [3] showed that the minimum number of characters
that needs to be removed to support a perfect phylogeny is the minimum vertex
cover of the conflict graph. Therefore |V C| is a lower bound on penalty(Topt)
and this is often useful in practice. We now introduce new definitions that will
be used to decompose a phylogeny:

Definition 5. For any phylogeny T and set of characters C′ ⊆ C:

– a super node is a maximal connected subtree T ′ of T s.t. for all edges e ∈
T ′, µ(e) /∈ C′

– the skeleton of T , s(T, C′), is the tree that results when all super nodes are
contracted to a vertex. The vertex set of s(T, C′) is the set of super nodes.
For all edges e ∈ s(T, C′), µ(e) ∈ C′.

Definition 6. A tag t(u) ∈ {0, 1}m of super node u in s(T, C′) has the property
that t(u)[c′] = l(v)[c′] for all c′ ∈ C′, vertices v ∈ u; t[u][i] = 0 for all i /∈ C′.

Throughout this paper, w.l.o.g. we will deal with phylogenies and skeletons
that are rooted at the all zeros taxa and tag respectively. Furthermore, the
skeletons used in this work themselves form a perfect phylogeny in the sense
that no character mutates more than once in the skeleton. Note that in such
skeletons, tag t(u)[i] = 1 i.f.f. character i mutates exactly once in the path from
the root to u. Figure 3(a) shows an example of a skeleton of a phylogeny. We
will use the term sub-phylogeny to refer to a subtree of a phylogeny.

3 Algorithm Description

Throughout the analysis, we fix an optimal phylogeny Topt and show that our
algorithm finds it. We assume that both Topt and its skeleton is rooted at the



function buildNPP ( binary matrix I, integer q )

1. let G(V, E) be the conflict graph of I

2. let Vnis ⊆ V be the set of non-isolated vertices
3. for all M ∈ 2c(Vnis), |M | ≤ q

(a) construct rooted perfect phylogeny PP(VPP , EPP ) on characters C \ M

(b) define λ : R 7→ VPP s.t. λ(r) = u i.f.f. for all i ∈ C \ M , r[i] = t(u)[i]
(c) Tf := linkTrees (PP)
(d) if penalty(Tf ) ≤ q then return Tf

4. return NIL

Fig. 1. Pseudo-code to find the skeleton.

function linkTrees ( skeleton Sk(Vs, Es) )

1. let S := root(Sk)
2. let RS := {s ∈ R|λ(s) = S}
3. for all children Si of S

(a) let Ski be subtree of Sk rooted at Si

(b) (ri, ci) := linkTrees(Ski)
4. let cost :=

P

i ci

5. for all i, let li := µ(S, ci)
6. for all i, define pi ∈ {0, 1}m s.t. pi[li] 6= ri[li] and for all j 6= li, pi[j] = ri[j]
7. let τ := RS ∪ (∪i{pi})
8. let D ⊆ C be the set of characters where taxa in τ differ
9. guess root taxa of S, rS ∈ {0, 1}m s.t. ∀i ∈ C \ D, ∀u ∈ τ, rS[i] = u[i]

10. let cS be the size of the optimal Steiner tree of τ ∪ {rS}
11. return (rS, cost + cS)

Fig. 2. Pseudo-code to construct and link imperfect phylogenies

all zeros label and tag respectively. The high level idea of our algorithm is to
first guess the characters that mutate more than once in Topt. The algorithm
then finds a perfect phylogeny on the remaining characters. Finally, it adds back
the imperfect components by solving a Steiner tree problem. The algorithm is
divided into two functions: buildNPP and linkTrees and the pseudo-code is
provided in Figures 1 and 2.

Function buildNPP starts by determining the set of characters c(Vnis) that
corresponds to the non-isolated vertices of the conflict graph in Step 2. From set
c(Vnis), the algorithm then selects by brute-force the set of characters M that
mutate more than once in Topt. Only characters corresponding to non-isolated
vertices can mutate more than once in any optimal phylogeny (a simple proof
follows from Buneman graphs [16]). Since all characters of C \M mutate exactly
once, the algorithm constructs a perfect phylogeny on this character set using
Gusfield’s linear time algorithm [8]. The perfect phylogeny is unique because of



(a)
(b)

Fig. 3. (a) Phylogeny T and skeleton s(T, C′), C′ = {3, 4}. Edges are labeled with
characters that mutate µ and super nodes with tags t. (b) Transform to remove a
degree 2 Steiner root from a super node. Note: the size of the phylogeny is unchanged.

Lemma 2. Note that PP is the skeleton s(Topt, C \ M). Since the tags of the
skeleton are unique, the algorithm can now determine the super node where
every taxon resides as defined by function λ in Step 3b. This rooted skeleton
PP is then passed into function linkTrees to complete the phylogeny.

Function linkTrees takes a rooted skeleton Sk (sub-skeleton of PP ) as
argument and returns a tuple (r, c). The goal of function linkTrees is to convert
skeleton Sk into a phylogeny for the taxa that reside in Sk by adding edges that
mutate M . Notice that using function λ, we know the set of taxa that reside
in skeleton Sk. The phylogeny for Sk is built bottom-up by first solving the
phylogenies on the sub-skeleton rooted at children super nodes of Sk. Tuple
(r, c) returned by function call to linkTrees(Sk) represents the cost c of the
optimal phylogeny when the label of the root vertex in the root super node of
Sk is r. Let S = root(Sk) represent the root super node of skeleton Sk. RS is
the set of input taxa that map to super node S under function λ. Let its children
super nodes be S1, S2, . . .. Assume that recursive calls to linkTrees(Si) return
(ri, ci). Notice that the parents of the set of roots ri all reside in super node S.
The parents of ri are denoted by pi and are identical to ri except in the character
that mutates in the edge connecting Si to S. Set τ is the union of pi and RS ,
and forms the set of vertices inferred to be in S. Set D is the set of characters
on which the labels of τ differ i.e. for all i ∈ D, ∃r1, r2 ∈ τ, r1[i] 6= r2[i]. In Step
9, we guess the root rS of super node S. This guess is ‘correct’ if it is identical
to the label of the root vertex of S in Topt. Notice that we are only guessing |D|
bits of rS . Corollary 1 of Lemma 3 along with optimality requires that the label
of the root vertex of Topt is identical to τ in all the characters C \ D:

Lemma 3. There exists an optimal phylogeny Topt that does not contain any
degree 2 Steiner roots in any super node.

Proof. Figure 3(b) shows how to transform a phylogeny that violates the prop-
erty into one that doesn’t. Root 10 is degree 2 Steiner and is moved into parent
supernode as 01. Since 10 was Steiner, the transformed tree contains all input.



Corollary 1. In Topt, the LCA of the set τ is the root of super node S.

In step 10, the algorithm finds the cost of the optimum Steiner tree for the
terminal set of taxa τ ∪{rS}. We use Dreyfus-Wagner recursion [15] to compute
this minimum Steiner tree. The function now returns rS along with the cost of
the phylogeny rooted in S which is obtained by adding the cost of the optimum
Steiner tree in S to the cost of the phylogenies rooted at ci. The following Lemma
bounds the running time of our algorithm and completes the analysis:

Lemma 4. The algorithm described above runs in time O((18κ)qnm + nm2)
and solves the BNPP problem with probability at least 2−2q. The algorithm can
be easily derandomized to run in time O((72κ)qnm + nm2).

Proof. The probability of a correct guess at Step 9 in function linkTrees is
exactly 2−|D|. Notice that the Steiner tree in super node S has at least |D|
edges. Since penalty(Topt) ≤ q, we know that there are at most 2q edges that
can be added in all of the recursive calls to linkTrees. Therefore, the probability
that all guesses at Step 9 are correct is at least 2−2q. The time to construct
the optimum Steiner tree in step 10 is O(3|τ |2|D|). Assuming that all guesses
are correct, the total time spent in Step 10 over all recursive calls is O(32q2q).
Therefore, the overall running time of the randomized algorithm is O((18κ)qnm+
nm2). To implement the randomized algorithm, since we do not know if the
guesses are correct, we can simply run the algorithm for the above time, and if
we do not have a solution, then we restart. Although presented as a randomized
algorithm for ease of exposition, it is not hard to see that the algorithm can
be derandomized by exploring all possible roots at Step 9. The derandomized
algorithm has total running time O((72κ)qnm + nm2).

4 Experiments and Conclusion

We tested the derandomized algorithm using non-recombining DNA sequences.
In such sequences, the most likely explanation for a pair of characters exhibiting
all four gametes is recurrent mutations. The results are summarized in Figure 4.
Conclusion: We have presented an algorithm for inferring optimal near-perfect
binary phylogenies that improves the running time of the previous method. This
problem is of considerable practical interest for phylogeny reconstruction from
SNP data. In practice, we find that the algorithm significantly outperforms its
worst case running time. Our algorithm is easily implemented unlike previous
theoretical algorithms. At the same time, the algorithm returns guaranteed op-
timal solution unlike popular fast heuristics such as pars.
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