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Abstract. Currently, large-scale projects are underway to perform whole
genome disease association studies. Such studies involve the genotyping
of hundreds of thousands of SNP markers. One of the main obstacles
in performing such studies is that the underlying population substruc-
ture could artificially inflate the p-values, thereby generating a lot of
false positives. Although existing tools cope well with very distinct sub-
populations, closely related population groups remain a major cause of
concern.

In this work, we present a graph based approach to detect population
substructure.Our method is based on a distance measure between indi-
viduals. We show analytically that when the allele frequency differences
between the two populations are large enough (in the l2-norm sense), our
algorithm is guaranteed to find the correct classification of individuals
to sub-populations.

We demonstrate the empirical performance of our algorithms on simu-
lated and real data and compare it against existing methods, namely
the widely used software method STRUCTURE and the recent method
EIGENSTRAT. Our new technique is highly efficient (in particular it is
hundreds of times faster than STRUCTURE), and overall it is more ac-
curate than the two other methods in classifying individuals into sub-
populations. We demonstrate empirically that unlike the other two meth-
ods, the accuracy of our algorithm consistently increases with the num-
ber of SNPs genotyped. Finally, we demonstrate that the efficiency of
our method can be used to assess the significance of the resulting clus-
ters. Surprisingly, we find that the different methods find population
sub-structure in each of the homogeneous populations of the HapMap
project. We use our significance score to demonstrate that these sub-
structures are probably due to over-fitting.

1 Introduction

Studying the etiology of common complex disease such as cancer, or
Parkinson’s disease, is an important task in the search for better treat-
ments and diagnosis tools for these diseases. A common practice towards
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this task is to perform an association study, in which the genetic vari-
ation of a set of cases (individuals carrying the disease) and a set of
controls (background population) is compared, and large discrepancies
between the two populations indicate an association of a specific locus
with the studied phenotype.
There are different forms of genetic variations that can be studied in the
context of association tests, the most common one is single nucleotide
polymorphisms (SNPs), which are nucleotides in the genome that are
found to be varying among different individuals. In general, these SNPs
are bi-allelic, that is only two alleles are found in the population. SNPs
are commonly used in association studies, as the SNP variation is be-
lieved to capture most of the human genetic variation [4–6], and further-
more, recent technology (e.g. Affymetrix or Illumina) allows the geno-
typing of hundreds of thousands of SNPs per individual for a couple of
hundred dollars. Thus, whole genome association studies, in which hun-
dreds of thousands of SNPs are genotyped for thousands of individuals
is becoming a common practice.
The validity of the results of an association study heavily depends on
the statistical analysis performed. One of the main growing concerns is
that population substructure may raise spurious discoveries. In associ-
ation studies, the discrepancies in the SNP-allele frequencies between
the cases and the controls are believed to imply an association of the
SNP with the disease, but if the cases and controls were collected from
two very different populations, this discrepancy may be explained by
the difference between the two populations, and hence the SNP is not
necessarily associated with the disease. Even subtle differences in the
population structures of the cases and the controls may result in spu-
rious associations. In particular, this problem is becoming more acute
when large scale association studies are performed(see for e.g., [8, 15]).
There are many computer programs that try to cope with this problem,
most notably the widely used software STRUCTURE [13] and a recently de-
veloped method EIGENSTRAT [14]. STRUCTURE uses a Markov Chain Monte
Carlo (MCMC) approach to find population substructure of a given pop-
ulation using DNA variation data. EIGENSTRAT is based on principal com-
ponent analysis (PCA). Mathematically, this problem can be seen as a
clustering problem, in which the different clusters correspond to different
populations. Such clustering problems have been studied under a variety
of different theoretical frameworks that share close similarities. For in-
stance the max-cut of a graph shares properties with the eigenvectors of
the corresponding (adjacency or Laplacian) matrix and therefore Spec-
tral methods or PCA, STRUCTURE and finding max-cuts of graphs share
close mathematical relationships [1–3, 12].
STRUCTURE has been used extensively in genetic studies (cited more than
700 times), and it has been shown to find population substructure quite
accurately in many examples. Even though STRUCTURE performs very well
in terms of accuracy, it is quite inefficient, and it may take weeks to run
over one whole genome data-set. Furthermore, even though STRUCTURE out-
puts a likelihood score which assists in interpreting the results, it is not
clear whether this likelihood score can be used to determine whether
there is actually a significant presence of population substructure. Fi-



nally, as the MCMC is inherently a heuristic approach, it is hard to
know which parameters to set for the algorithm; in particular, as we
show in this paper, there is no uniform set of parameters that performs
well for all the data-sets.
In order to cope with these problems, we introduce a new graph based
method for clustering populations. We concentrate in this paper on the
clustering of two populations, although the method can be easily ex-
tended to multiple populations. Our technique is based on a simple
paradigm. We define a distance between every pair of individuals, and we
then search for a maximum cut in the graph induced by these distances.
From that cut, we perform a local search that maximizes the likelihood
of the data, similar to the criterion used in STRUCTURE. The main ad-
vantage of our method is that it is extremely efficient, and at the same
time very accurate. Furthermore, since eventually the algorithm opti-
mizes the same score function as that of STRUCTURE, it can be viewed as
a fast method that finds a local optimum for this criterion.
It is important to note that the efficiency of our method allows us to
measure the significance of the population substructure by running our
algorithm on thousands of permutations of the data. For instance, we
find that both our method and STRUCTURE find a population substructure
in the YRI population, genotyped by the HapMap project [10]. On the
other hand, after the permutation test, we observe that the p-value is
0.75, indicating that this partition is probably just an artifact. Since
STRUCTURE is too slow to perform such a test, our method gives a rigorous
alternative to the significance estimators of STRUCTURE.
We measured the performance of our method and compared it to STRUCTURE on
the HapMap populations, as well as on simulated data. We find that our
method is at least as accurate as STRUCTURE, and an order of magnitude
more efficient. Furthermore, we find that the accuracy of STRUCTURE de-
grades when many SNPs are used (thousands), while the accuracy of
our method consistently improves when the number of SNPs increases.
We have also compared our method to EIGENSTRAT, a recent program
that corrects for population stratification using the eigenvalues of the
genotype covariance matrix [14]. In [14] they suggest a method based
on principle component analysis, that assigns each individual a vector
representing its ancestral composition. Although their method is not
specifically designed for clustering populations, we have adapted their
method in a natural way and compared it to the method developed in
this paper. We found that EIGENSTRAT is quite efficient, but it appears
not to perform very well on many of our datasets. We believe that this
is due to the fact that the principal component analysis fails when the
sub-populations structures are not independent.
Technically, our method is based on a distance defined between pairs
of individuals. There are many possible distance measures, and the re-
sulting algorithm is very sensitive to the choice of the distance measure.
Surprisingly, one of the most natural measures, i.e., the Hamming dis-
tance, performs quite poorly. We therefore use as a starting point the
mother-father distance defined in [3]. This measure satisfies the prop-
erty that the expected distance between two individuals drawn from the
same sub-population is zero while the distance between individuals from



two different sub-populations is positive. Furthermore, in [3] it is shown
that the max-cut induces the correct partitioning asymptotically, at least
when the sub-population sizes are equal. Our final distance uses a more
complicated procedure which takes into account the genotypes of the
whole population in order to determine the distance between a pair of
individuals. We show empirically that this procedure is advantageous
and that the resulting distance better represents the population struc-
ture. This distance measure may be of independent interest, as it may
be used in other population based applications.

2 Problem Formulation

We consider the setting in which a set of n individuals are genotyped
over m SNPs. The problem of population stratification focuses on the
assignment of each of the individuals to a population cluster. In practice,
an individual could belong to more than one cluster, (for instance when
the individual’s ancestors come from two or more different populations).
In this paper, however we concentrate on the simpler case, in which each
individual is assumed to belong to exactly one population. Furthermore,
we assume that the number of populations K is known. We will observe
later that this assumption is not too restrictive, as one can test for the
validity of the solution. Our goal is to cluster the set of individuals into
K clusters, based on their genotype information.
In order to define the problem mathematically, we first introduce a ran-
dom generative model for the individuals’ genotypes. Each genotype is
represented by a vector g ∈ {0, 1, 2}m, where gj represents the minor
allele in SNP j, that is, gj = 1 for heterozygous, and it is 0 and 2 for the
homozygous major or minor alleles respectively. A population is char-
acterized by the minor allele frequency in each of the SNPs. Thus, a
population i is defined by an m-dimensional vector p

i = (pi
1, . . . , p

i
m),

where pi
j represents the minor allele frequency of population i in posi-

tion j. The random generative model assumes that all individuals are
sampled independently, and that for each individual g, the different SNP
values are sampled independently, where gj is sampled from the distri-
bution {(pi

j)
2, 2pi

j(1 − pi
j), (1 − pi

j)
2} (e.g., the probability that gj = 1

is 2pi
j(1 − pi

j)). This model has been used by previous approaches, and
in particular by STRUCTURE. The assumption that the different SNPs are
independent can be justified if the SNPs are physically distant from each
other (and thus, they are in linkage equilibrium). We define the distance
between two sub-populations i, i′ as:

d(i, i′) =

√

∑

j

(pi
j − pi′

j )2

Formally, we assume that we get as an input an n×m genotype matrix
A, where the rows R(A) denote diploid individuals and the columns
C(A) represent SNP sites. Each entry in A is in {0, 1, 2}. We search
for a classification θ : R(A)→ {1, . . . , K}, that assigns every individual
to a particular sub-population. Let θ̂ be the correct classification. Our



objective is to minimize the number of errors made by the algorithm,
that is, we would like to minimize |{r ∈ R(A) | θ(r) 6= θ̂(r)}|.

2.1 The Graph Based Approach

It is convenient to think of the above problem as a clustering problem
in a graph. In this case, we construct a complete graph G = (V, E),
where vertex set V corresponds to the set of individuals, and edge set
E is the set of all pairs of individuals. We assign a distance for each
edge, which will intuitively represent the genomic distance between the
two individuals. Then, the main idea of the algorithm is to find a max-
K-cut in the resulting graph. This makes sense since G captures the
fact that the genomic distance between two individuals from the same
sub-population is small, while the distance between two individuals from
different sub-populations may be large. Clearly, the resulting algorithm
is sensitive to the choice of the distance measure.
The most natural distance measure is the Hamming distance, which
counts the number of differences between the two vectors. However,
we observe that in practice the Hamming distance does not provide
very good results1. We therefore follow [3], and start from the so called
Mother-Father distance (MF). The MF-distance satisfies the property
that the expected distance between two individuals from the same pop-
ulation group is 0 and the expected distance between two individuals
of different populations is positive. Actually, it is not hard to see that
the MF-distance is the only pair-wise distance measure that satisfies this
property (up to a constant factor).
Formally, for any two individuals r1, r2, we define δj(r1, r2), the MF-
distance at SNP j as follows. We set δj(r1, r2) = −1 if r1j = r2j = 1,
δj(r1, r2) = 2 if r1j = 0, r2j = 2 or r1j = 2, r2j = 0, and 0 otherwise. We
then define the MF-distance δ(r1, r2) to be the sum of the MF-distances
over all SNPs. That is, δ(r1, r2) =

∑

j
δj(r1, r2).

We can now compute the expected distance between two individuals
r1, r2 from populations i and i′ E[δ(r1, r2)]:

=
∑

j

E[δj(r1, r2)]

=
∑

j

2(pi
j)

2(1− pi′

j )2 + 2(pi′

j )2(1− pi
j)

2 − 2pi
j(1− pi

j)(2pi′

j (1− pi′

j ))

= 2
∑

j

(pi
j(1− pi′

j )− pi′

j (1− pi
j))

2 = 2
∑

j

(pi
j − pi′

j )2 = 2d(i, i′)2

Consequently, if i 6= i′, then the expected MF-distance between two
individuals of different populations is positive. On the other hand, if
i = i′, then d(i, i′) = 0, and the expected MF-distance between two
individuals of the same population is zero. It is further shown in [3],
that if the distance between two different sub-populations d(i, i′) >>

1 For example, when p1
j = 2/3, p2

j = 1, the expected distance within population 1 is
larger than the expected distance across



√
1.5(m log n)0.25, then with high probability, all the pair-wise distances

within a sub-population are at most d(i, i′)2, while pair-wise distances
across the two sub-populations are at least d(i, i′)2. In that case, the max-
K-cut algorithm may be reduced to a connected component algorithm.
Furthermore, it can be shown that even with much smaller separation
of the two populations, the max-cut on the graph with MF-distances
produces the correct cut [3].

2.2 Triplets-based distance

Even though the MF-distance has some very nice properties, our empir-
ical studies (see Appendix A) show that the max-cut solution obtained
from this distance is sometimes biased towards an unbalanced partition.
Intuitively, although the expected value of the MF-distance is monotone
with the distance between the populations, unbalanced cuts may be cho-
sen by the algorithm by pure chance. It is therefore essential to find a
distance measure that has smaller variance than the MF-distance.
We build on top of MF-distances to obtain a more sensitive distance
measure, which we call the triplet distance. The main idea of the triplet
measure is to utilize information from all genotypes to determine the
distance between a pair of individuals.
We will now formally define the triplet distance for a pair of individuals
r1 and r2. The triplet distance depends on two parameters a, b that will
be fixed later. For every third individual in the population, r, we consider
the unordered set {r1, r2, r}, which we refer to as a triplet. For each such
triplet, we define two indicator variables Xr and Yr such that Xr = 1
if δ(r1, r2) ≥ max(δ(r1, r), δ(r2, r)), and Xr = 0 otherwise. Similarly,
Yr = 1 if δ(r1, r2) ≤ min(δ(r1, r), δ(r2, r)), and it is zero otherwise. We
define the triplet-based distance as da,b(r1, r2) =

∑

r
(aXr + bYr). In

other words, to compute the triplet distance of r1 and r2, we consider
every third individual r and if δ(r1, r2) is the largest among the three
MF-distances, then we add a and if it is the smallest, then we add b.
We now find the expected triplet distance da,b(r1, r2) for a pair of indi-
viduals r1, r2. We will implicitly assume that all MF-distances are dif-
ferent (this is true if the number of SNPs is sufficiently large). For a
triplet (r1, r2, r), we consider the following two cases. First, assume that
all three individuals are from the same population. Then by symmetry,
Pr(Xr = 1) = Pr(Yr = 1) = 1

3
. Otherwise, if r1, r2 are from population

i, and r is from another sub-population i′, we will bound the probability
Pr[δ(r1, r2) ≥ δ(r1, r)]. Intuitively, this probability should be small if the
distance d(i, i′) is large enough. Formally, we know that

E[δ(r1, r2)− δ(r1, r)] = −2d(i, i′)2.

Furthermore, δ(r1, r2)−δ(r1, r) is the sum of m random variables that lie
in the interval [−2, 2]. This is because, if δ(r1, r2) = −1 then δ(r1, r) 6= 2
and vice-versa. Therefore, we could use the following tail bound, known
as Hoeffding bound[9]:

Theorem 1. Let X1, . . . , Xn be n independent random variables, and
let a, b be such that for every i, a ≤ Xi ≤ b. Denote X = X1 + . . . + Xn.



Then,

Pr(X − E[X] > α) ≤ exp

(

−2α2

n(b− a)2

)

.

Thus, using the Hoeffding bound, we get Pr[δ(r1, r2)− δ(r1, r) > 0]

= Pr[δ(r1, r2)− δ(r1, r) + 2d(i, i′)2 > 2d(i, i′)2] ≤ exp

(

−d(i, i′)4

2m

)

If d(i, i′) = (6tm log n)0.25 for t > 1, we get by the union bound that with
very high probability all triplets satisfy the property that edge distance
within a sub-population is lesser than any edge distance across two pop-
ulations. The probability that this event does not happen is smaller than

1

n3t−2
. We now use these observations to compute the expected triplet

distances. Assume that r1, r2 are from sub-population i, and that Pi

is the frequency (prior) of this sub-population in the entire population.
Then,

E[da,b(r1, r2)] = E[a
∑

r

Xr + b
∑

r

Yr]

≤ n
(

a
Pi

3
+ b(1− 2Pi

3
)
)

+
|a|+ |b|
n3t−2

≈ n
(

a
Pi

3
+ b(1− 2Pi

3
)
)

Similarly, for r1, r2 from different sub-populations i, i′, it is easy to see
that

E[da,b(r1, r2)] ≥ an
2
− |a|+|b|

n3t−2
≈ an

2

If we know the frequency of the sub-populations in the entire population,
then we can take P = maxi Pi. For instance, if we set a = (2/P )− 2, b =
−1 we get that the expected distance between individuals from two dif-
ferent populations is positive, while the expected distance between in-
dividuals of the same population is non-positive. For a balanced cut,
selecting a = 4, b = −1, gives positive expected distance between in-
dividuals of different populations and zero otherwise. In practice, even
though we do not know the correct value of P , we try different values
of P to determine a, b, each giving different partitions. We then pick the
partition with the largest likelihood score, where the likelihood score is
similar to the one used for STRUCTURE, as we now describe.
Recall that A is the input genotype matrix with R(A) being the geno-
types of the n input individuals, θ : R(A) 7→ {1, . . . , K} is the classifica-
tion of individuals to sub-populations and p

i is an m-dimensional vector
of the MAF of sub-population i. Given θ, the maximum likelihood esti-
mate of pi is obtained by simply counting the allele frequencies in each of
the sub-populations defined by the partition. The posterior probability
is given by

Pr[θ, pi |A] ∝ Pr[θ] Pr[pi ] Pr[A|θ, pi ]

We set the priors for θ and p
i to be fixed and uniform, and thus maximiz-

ing the posterior is equivalent to maximizing the likelihood L(A|θ, pi) =
Pr[A|θ, pi ].



Algorithm (GRAPH-TRIPLETS). We can now describe the whole al-
gorithm. The algorithm begins by computing the MF-distance for each
pair of individuals. Then, for every pair of individuals r1, r2, we com-
pute X(r1, r2) =

∑

r
Xr, and Y (r1, r2) =

∑

r
Yr. The algorithm then

proceeds in iterations. In each iteration we pick a value for P , and
we search for a partition that maximizes the likelihood score, based
on the prior information that one of the sub-populations is of size P .
We take values of P ranging from 0.5 through 0.9 in 0.1 increments.
Each such value determines the values of a and b. The triplet distances
are then computed for each pair of individuals, by setting da,b(r1, r2) =
((2/P )−2)X(r1, r2)−Y (r1, r2). These distances induce a complete graph
G = (V, E), where the vertices represent individuals and the edges are
weighted by the triplet distances. We are then interested in finding the
maximum K-cut.
Unfortunately, finding the max-K-cut of the graph is an NP-hard prob-
lem even when K = 2 [7]. We therefore use the Kernighan-Lin heuris-
tic [9], which is a hill-climbing method to find the optimal cut. The
algorithm for the case when K = 2 is presented in Figure 1. The algo-
rithm randomly partitions the vertices V (G) into two disjoint sets V1

and V2. The algorithm then proceeds in rounds each of which involves
performing |V (G)| iterations. At each iteration we move a vertex u from
one side of the cut to the other. The vertex u is chosen so that the re-
sulting cut is maximized. Unlike standard local search techniques, the
algorithm swaps u even if this results in the reduction of the cut-size.
Once a vertex u is swapped, it cannot be swapped again until the next
round. At the end of a round all vertices have been swapped, and the
best partition in that round is chosen for the next round. We repeat until
the cuts in the beginning and the end of a round are identical, and thus
no improvement can be achieved. In Figure 1, set Vx(Vx′) denotes the
vertex set of V1, V2 that currently contains x (does not contain x) and
cut(V1, V2) denotes the cost of the cut.
Using Kernighan-Lin, for each setting of a, b we find a max-K-cut and we
select the one that maximizes L(A|θ, pi). Finally, we perform a greedy
local search by moving a vertex from one side to another, if it improves
the likelihood. This final step, typically improves the accuracy by a little
in practice.

3 Results

To evaluate the performance of our method, we compared
GRAPH-TRIPLETS to two state of the art methods that deal with popu-
lation stratification, namely STRUCTURE and EIGENSTRAT, which are de-
scribed below.
STRUCTURE [13] is a well established package that uses Markov Chain
Monte Carlo method (MCMC) to heuristically maximize the posterior
probability. Structure can be seeded with a number of different param-
eters. We used K = 2, to denote that the program should look for
two sub-populations. By default, the program assumes that the allele
frequencies of the two populations are independent. For closely related



kernighanLin(graph G)

1. randomly partition V (G) into V1, V2

2. α← 1
3. while α = 1 do (* rounds *)

(a) α← 0, χ← V1 ∪ V2

(b) while |χ| > 0 do (* iterations *)

i. u← argmaxx∈χcut(Vx \ {x}, Vx′ ∪ {x})
ii. χ← χ \ {u}
iii. if u ∈ V1 then V1 ← V1 \ {u}, V2 ← V2 ∪ {u}
iv. else V1 ← V1 ∪ {u}, V2 ← V2 \ {u}
v. if cut(V1, V2) > cut(V ∗

1 , V ∗
2 ) then V ∗

1 ← V1, V
∗
2 ← V2,

α← 1
(c) V1 ← V ∗

1 , V2 ← V ∗
2

Fig. 1. Kernighan-Lin heuristic to find max-cut of graph G.

sub-populations, however, the software allows for a mode in which the
frequencies are assumed to be correlated. We ran the program on both
modes, with the parameter turned off and on. The default number of
MCMC and Burnin iterations is 2000 each. We varied this number to
analyze the trade-off between run-time and accuracy. We used the de-
fault values for the rest of the parameters.
We note that STRUCTURE is a software that does much more than just
clustering individuals. Among other things, it can cope with admixed
populations, and it can incorporate linkage disequilibrium into its model.
We have not compared our method to these modes of STRUCTURE, as it is
beyond the scope of this paper, and our algorithm is not optimized for
such tasks at this point.
EIGENSTRAT [14] is a relatively new software tool, which corrects popula-
tion sub-structure by the spectral properties of the covariance genotype
matrix. In a nutshell, EIGENSTRAT takes A an m×n input genotype ma-
trix, where rows are SNPs and columns are individuals and normalizes
each entry of A by subtracting the row mean (minor allele frequency of
the SNP) and dividing by the row’s standard deviation. It then takes
the largest eigenvectors of the covariance n×n matrix Ψ , and uses those
to correct for population sub-structure. Even though EIGENSTRAT is not
explicitly described as a genetic clustering method, we adapt their al-
gorithm in a natural way, resulting in a clustering algorithm in which
the clusters are determined by using the sign of the entries of the high-
est eigenvector of Ψ . We implemented this clustering algorithm in Mat-
Lab and compared it to our method. We refer to our implementation as
Spectral in the results presented.

Datasets. For the evaluation, we used datasets from two different
sources. First, we used simulated data generated using the following
model. Each sub-population i is represented by an m-dimensional vector
of allele frequencies p

i , and an individual of the population is sampled
by randomly and independently picking allele counts according to the
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Fig. 2. Comparison of accuracy on simulated data. GRAPH-TRIPLETS is consistent in its
accuracy and converges to the correct partition with increase in SNPs or increase in
distance. On (a) MAF of sub-populations 1 and 2 were 0.1 and 0.13 respectively. On
(b) the number of SNPs was fixed to 1000 and MAF of sub-population 1 was fixed at
0.1. We used an average of three randomly generated data sets to obtain every point.
Error bars indicate highest and lowest values obtained.

allele frequency distributions of the sub-population. For simulations, we
assumed that all SNPs within a sub-population had the same allele fre-
quency, i.e., for any i, pi

j = pi
j′ .

We have also used the publicly available data from the International
HapMap consortium [10]. This data-set consists of four population groups:
Utah residents with ancestry from northern and western Europe(CEU),
Yoruba in Ibadan, Nigeria (YRI), Han Chinese in Beijing, China (CHB)
and Japanese in Tokyo, Japan (JPT) with 90, 90, 45 and 44 individu-
als respectively. The Central Europeans and Yoruba Africans consisted
of thirty trios each, and therefore in order to avoid these dependencies,
we used the 60 parents from each of the two populations, ignoring the
30 children. To obtain a test set where the SNPs are independent, we
sampled m SNPs uniformly at random from chromosome 10. We evalu-
ated the programs on each of the six pairs of populations, with different
numbers of SNPs, ranging from 1000 to 8000.

Evaluation Measures. There are many possible ways to evaluate the
performance of the algorithms. We chose to let each of the program sep-
arate the genotypes of two populations (say Africans and Chinese in the
HapMap data) into two clusters, and the error rate of such an experi-
ment would be the number of individuals misclassified (for instance, the
number of Africans classified as Chinese). We have also compared the
running-time of the methods. In summary, our experiments show that
the graph-based method is significantly faster while being at least as
accurate as existing methods.

Simulated Data. On simulated data, we studied closely related popula-
tions. We fixed the minor allele frequency of one population to be 0.1 for
each of its SNPs, while for the other population the minor allele frequency
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Fig. 3. Comparison of run-times on simulated and real data. GRAPH-TRIPLETS is hun-
dreds of times faster than STRUCTURE.
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Fig. 4. Comparison of accuracy on HapMap Chinese/Japanese. GRAPH-TRIPLETS is
accurate and converges to the correct partition with increase in SNPs. It is unclear
what parameters of STRUCTURE to use. We used the average of four randomly drawn
data sets to obtain every point. Error bars indicate the highest and lowest values
obtained.

varied from 0.12 to 0.19. On all the data presented, STRUCTURE running
on default parameters fails to find two sub-populations, i.e., it returns
solution with all individuals in one cluster. We therefore only report
STRUCTURE running for 2000 iterations with the correlation mode turned
on. Figure 3(a) shows that GRAPH-TRIPLETS is an order of magnitude
faster than STRUCTURE. Figure 2 shows that it makes substantially less
errors overall than STRUCTURE and the spectral clustering which is based
on EIGENSTRAT. It is conceivable that STRUCTURE would find better solu-
tions if it uses even more time, although this seems rather prohibitive.
We note that the performance of STRUCTURE seems not to be monotonic
with the number of SNPs used.

HapMap. For the HapMap datasets, we considered all six pairs of
populations. For most pairs, all methods worked perfectly (no errors
were made) with as few as 200 SNPs. The only hard instance was the



Chinese-Japanese pair. For this pair, none of the methods could give a
perfect clustering prediction even when 8000 SNPs were used. As can
be seen from Figure 4, the spectral method and GRAPH-TRIPLETS seem
to produce lesser errors than the classification returned by STRUCTURE.
Furthermore, we used the two different modes of STRUCTURE (with or
without correlations), and the results were inconclusive regarding which
one works better on this dataset, as when small number of SNPs were
used (1000, 2000 or 4000), the correlation mode seemed to perform bet-
ter. When more SNPs were used (8000 SNPs, 2000 or 4000 iters), the
‘no correlation’ mode of STRUCTURE was better.
As before, Figure 3(b) demonstrates that GRAPH-TRIPLETS is much more
efficient than STRUCTURE. Specifically, the run time for GRAPH-TRIPLETS ≈
300 times faster for 1000 SNPs and ≈ 1000 times faster for 8000 SNPs.

4 Significance of Clusters

An obvious and important question to consider is whether the clusters
obtained from the methods are significant. In practice, we could run
STRUCTUREor GRAPH-TRIPLETS with K, the number of sub-populations set
to 2. When the software returns a solution, with individuals divided into
two populations, there is no guarantee on whether the input set of taxa
actually even contains two sub-populations. To test the significance of the
clusters, one could perform the statistical tests described by Pritchard
et al. [13], which as the authors themselves point out either uses dubious
assumptions or does not work for large number of SNPs in practice.
Alternatively, we could examine the change in the likelihood function or
use information based evaluation such as minimum description length to
decide on whether there is truly two sub-populations or not.
A simple and direct approach is to permute the alleles in each site inde-
pendently such that the input no longer has sub-structure. We can then
re-run the algorithm on the new input. The p-value is simply the fraction
of times, the permuted input had solution larger (or more likely) than
that of the original input.
However, such tests can only be performed if the algorithm to find clus-
ters is very efficient. Here, we simply considered a randomly drawn data
set with 8000 SNPs from each of the HapMap populations. We ran struc-
ture (default parameters) and triplets with K = 2. We report the number
of errors made (size of the smaller set) along with the p-value which can
be efficiently computed using the triplets method. We believe that the
computation of this p-value is a great benefit in practice that our new
technique can offer. The results for 1000 permutations is presented in
Table 1.

5 Conclusions

The problem of population stratification is an increasing concern in the
context of disease association studies. In particular, its influence on whole
genome association studies (for e.g. [8, 15]) are severe. Even though ex-
isting methods for clustering individuals based on their SNPs provide



Errors

structure Triplets Triplets p-value

Central Europeans, CEU 21 2 0.01

Yoruba Africans, YRI 26 20 0.75

Chinese, CHB 17 16 0.267

Japanese, JPT 18 12 0.929
Table 1. Triplets can be used to compute p-values directly.

relatively accurate predictions, there is no rigorous theory that ensures
the convergence of these methods to the correct solution. Furthermore,
there is no study that compares these methods on a variety of datasets,
both real and simulated. Our paper has been motivated by these two
concerns.

In this paper, we suggest a graph based method for detecting popula-
tion stratification. The distance measure used in our method builds on
the Mother-Father distance that was suggested in [3], where it has been
rigorously and analytically shown that if the sample size is large enough,
the measure will represent the correct distance between individuals, and
therefore our algorithms will converge to the true population clusters.
We believe that this theoretical foundation for our algorithm is an im-
portant advantage that proves itself in practice. In particular, we show
that our algorithm is consistently at least as accurate as STRUCTURE and
EIGENSTRAT.

One of the questions we raised in this paper is the validity of the popu-
lation substructure found by the clustering algorithm. We have demon-
strated that the different methods will tend to cluster the individuals
in two clusters, even if in reality there is only one population. In order
to assess the significance of these partitions, we suggest a permutation
test, which seems to give the correct significance scores on the HapMap
populations. This permutation test can only be carried out if the clus-
tering methods are highly efficient. As our method runs in seconds over
thousands of SNPs and hundreds of individuals, this was feasible.

We note that our paper focuses on the clustering of two populations
while STRUCTURE and EIGENSTRAT can do much more than that. In par-
ticular, they can deal with admixed populations, correlated populations,
and linkage disequilibrium. We hope that a combination of the existing
methods such as STRUCTURE and EIGENSTRAT, together with our graph
based approach may lead to improved tools for these cases as well.
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Fig. 5. Comparison of MF and Triplet distance measures. Figure (a) shows that when
only balanced cuts are considered, the distance measures provide comparable p-values.
Figure (b) shows that more often unbalanced cuts in the MF distance contains cost
larger than that of the correct cut. In both figures MAF of sub-population 1 was fixed
to 0.1. For Figure (a) we used 100 individuals in each population and for Figure (b)
we used 10 individuals in each population. We used parameters a = 2, b = −1 for the
triplets.

A Appendix: Empirical Comparison of MF

with Triplets.

To motivate our choice of triplet based distance instead of MF-distance,
we show empirically that the triplet distance gives a better separation
of the two populations into two clusters. In order to do so, we randomly
generate two sub-populations according to the following model. We gen-
erate the two populations, such that one population has minor allele
p1 for all the SNPs, and the other population has minor allele p2 for
all the SNPs. Furthermore, each of these sub-populations has the same
number of individuals. We measure the cut distance of the correct cut
using the MF-distance and the triplet distance. Let dmf and dt be the
correct cut weight for mother-father and triplets. We then find 10, 000
random balanced cuts of the graph and measure the cut weights. We
then measure the fraction of times the random cut cost was larger than
dmf or dt respectively. We call this measure the balanced p-value. We
also measured the max-cut for 10, 000 randomly generated unbalanced
cuts, where 0.25-fraction of the vertices were on one side. We call this
measure the unbalanced p-value. .
The results of the various simulation tests are shown in Figure 5. Fig-
ure 5(a), shows that the balanced p-values are similar for triplets based
distance and for the MF-distance, and that the balanced p-value of both
methods quickly go down to zero. More importantly, Figure 5(b) shows
that triplets clearly has a lower p-value in the case of unbalanced cuts.
While MF-distance contains several unbalanced cuts of high weight, on
the triplets, the correct cut has cost typically higher than all other cuts.
This provides an evidence that the triplet distance is advantageous.


