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Abstract. Problem definition: We consider the setting where a retailer with many physical 
stores and an online presence seeks to fulfill online orders using an omnichannel fulfill-
ment program, such as buy-online ship-from-store. These fulfillment strategies try to mini-
mize cost while fulfilling orders within acceptable service times. We focus on single-item 
orders. Typically, all online orders for the item are sent to a favorable set of locations to be 
filled. Failed trials are sent back for further stages of trial fulfillment until the process times 
out. The multistage order fulfillment problem is thus an interplay of the pick-failure proba-
bilities at the stores where they may be shipped from and the picking, shipping, and can-
cellation costs from these locations. Methodology: We model the problem as one of 
sequencing the stores from which an order is attempted to be picked and shipped in the 
most cost-effective way over multiple stages. We solve the fulfillment problem optimally 
by taking into account the changing pick-failure probabilities as a result of other online 
order fulfillment trials by casting it as a network flow problem with convex costs. We incorpo-
rate this as the second stage of a two-stage online order acceptance problem and generalize 
earlier results to the case with pick failures at stores. Results: We investigate the real-world 
performance of our methods and models on real order data of several of the top U.S. retailers 
that use our collaborating e-commerce solutions provider to optimize their fulfillment strate-
gies. Academic/Practical Relevance: Our work enables retailers to incorporate pick failure 
in their order management systems for ship-from-store programs. Our new online order- 
acceptance policies that take into account pick failures can thus create significant savings for 
omnichannel retailers.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.1164. 

Keywords: omnichannel ful!llment • pick failure • multistage stochastic programming • dynamic programming •
in!nitesimal perturbation analysis

1. Introduction
The share of e-commerce as a percentage of total retail 
sales has steadily grown from 4% in 2010 to 13.6% in 
2020 in the United States (U.S. Department of Commerce 
2021). The Covid pandemic further accelerated the adop-
tion of e-commerce among customers as the percentage 
of online sales jumped from 11.8% in quarter 1 2020 to 
16.1% in quarter 2 2020. Such trends have both driven 
and been driven by retailers with traditional brick-and- 
mortar stores adopting online channels to connect to cus-
tomers. Omnichannel retailing is the merging of in-store 
and online channels of demand and fulfillment, where 
the customer can select from a combination of online and 
physical channels to place and receive orders. We study 
the omnichannel ship-from-store (SFS) programs where 
the retailer uses the inventory at its traditional brick-and- 
mortar stores to home deliver an order, as opposed to 
using a dedicated warehouse or fulfillment center.

The advantages of leveraging traditional (brick-and- 
mortar) stores for fulfillment are many. Making in-store 
inventory available to fulfill online demand reduces the 
potential of stocking out. Shipping from a store could be 
a cheaper and faster option because it is very likely that a 
store exists near a typical online customer, whereas dedi-
cated fulfillment centers could be much farther away. 
Finally, with the advent of one- or two-day delivery 
commitment to customers, a store that is closer to the 
customer might be able to fulfill the order within the Ser-
vice Level Agreement, whereas a remote fulfillment cen-
ter would not be able to do that. Traditional retailers that 
aim to compete with internet counterparts also view this 
as a competitive strategy (CNBC 2021).

Challenges in SFS fulfillment arise from the explosion of 
choices of the location to fulfill an order from, the influence 
of in-store demand on the process, and the phenomenon of 
pick failures when online orders are unsuccessfully tried 
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for fulfillment at stores. Typically, the retailer makes 
the decision of assigning accepted online orders to 
stores at the end of a day after the in-store demand at 
the stores are satisfied. We can solve the choice of loca-
tions to fulfill from as a transportation problem with 
the online orders as demands and leftover inventory at 
stores after satisfying in-store demand as supplies. 
Inventory depletion at stores due to in-store demand 
necessitates the reevaluation of traditional online order 
acceptance policies: In particular, accepting online orders 
up to the inventory level of stores could lead to order can-
cellation after depletion from in-store demand, whereas 
accepting too few orders could lead to lost sales. This 
trade-off faced by the retailer was studied in Karp (2017) 
who provided an optimal joint acceptance and fulfillment 
policy. In this paper, we focus on modeling the third chal-
lenge of pick failures stemming from inventory inaccu-
racy at stores in the SFS fulfillment and order acceptance 
process.

In omnichannel SFS programs, as stores become an 
integral part of a retailer’s fulfillment strategy, the likeli-
hood of pick failures increases as a result of inaccurate 
inventory counts. The problem of inventory inaccuracy 
in traditional brick-and-mortar stores is known to be sig-
nificant (DeHoratius and Raman 2008, Shabani et al. 
2021). Although warehouses are built for pushing pick, 
pack, and shipping efficiencies to the limits (Masae et al. 
2019), brick-and-mortar stores are not inherently designed 
for this purpose (Sheffi 2016, Smith 2020). The problem of 
inventory inaccuracy intensifies in brick-and-mortar stores 
because of the complexity of the stores, where everything 
is unpacked and individually displayed and potentially 
hundreds of people have access to each item and can move 
(or remove) them without tracking. Even if the inventory is 
present in the store, the store may be busy, in which case 
they may fail to pick one or more items because of labor 
capacity constraints. Other causes of pick failures at stores 
include shrinkage, theft, damage, incoming delivery receiv-
ing errors, labeling and identification issues, human error, 
disorganized pick locations, and infrequent cycle counting.

Pick success rate ranges from 35% to a high of only 
60% (Caro and Sadr 2019). In their study, Skorupa (2015) 
states that 43.2% of omnichannel retailers found that last 
minute issues (such as store stockouts) are big issues 

preventing omnichannel fulfillment in a timely, efficient 
manner. Early studies of online service failures by Hollo-
way and Beatty (2003) already highlight nondelivery 
and late delivery after acceptance of online orders as the 
most important challenges for companies, which are pri-
marily caused by pick failures and trials respectively in 
the omnichannel setting.

We observe pick failure in our order fulfillment data 
(described in more detail in Section 6), as shown in Figure 
1, where pick failure is more likely at low inventory levels. 
We further observe the overall pick-failure rate to be as 
high as 20% for one of the retailers, meaning one in five 
orders that are tried at the retailer end up in pick failure. 
This necessitates a careful incorporation of this feature in 
modeling the costs in the order fulfillment process.

1.1. Model
Order management involves the seamless integration of 
orders from multiple channels with inventory databases 
across the entire fulfillment network. For proper execu-
tion, the process involves real-time visibility into the 
entire order life-cycle starting from the placement of 
order and ending in the fulfillment of the order. This 
paper is a collaboration with an e-commerce solutions 
provider (henceforth referred to simply as the provider) 
who helps several of the largest high-end North Ameri-
can retailers with SFS fulfillment. Our designed solutions 
are integrated with the retailer’s Order Management 
System (OMS).

In practice, retailers usually implement a threshold on 
the number of orders of a stock keeping unit (SKU) that 
can be accepted in a day based on the network inventory 
levels at the beginning of the day. This is implemented 
by making the SKU unavailable online after accepting 
these many orders. In the beginning of a typical day, the 
OMS provides the decision engine the inventory levels 
of items across the fulfillment network and expects a 
threshold for the number of orders that can be accepted 
online.

Once an order placed on the retailer’s website is 
accepted for fulfillment, the OMS provides the decision 
engine with the customer’s zip code, the candidate stores 
that can fulfill them, and requests routing instructions. A 
response is expected with routing instructions to route 

Figure 1. (Color online) Pick-Failure Probabilities of Single-SKU Orders at Three Stores as a Function of the Inventory 
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each item in that order to a store, either in real time or at 
the end of each day. The OMS then executes those routing 
instructions by notifying the respective store associates 
on the store terminal to pick, pack, and ship the items that 
are routed to be fulfilled from that store. Some items will 
be successfully fulfilled and others will not. A failure 
would result in a call to the provider’s system by the 
OMS, and the process continues until a maximum num-
ber of trials after which all unfulfilled orders are canceled 
(see Figure 2).

Order acceptance and fulfillment decisions involve 
three distinct costs: (i) lost-sales cost, (ii) cancellation 
cost, and (iii) fulfillment cost. The lost-sales costs and the 
cancellation costs determine the trade-off between not 
accepting an order that can potentially be filled and 
accepting an online order that gets cancelled. In our 
models, we use the profit margin of a product as the lost- 
sales cost. The cancellation cost is typically set by the 
retailer to account for customer dissatisfaction. The ful-
fillment costs associated with one stage of attempted 
routing fall largely into three buckets. The first is the cost 
associated with shipping packages to the customer’s des-
tination zip code from the store’s origin zip code that can 
be calculated from a shipping rate table. The second cost 
is the labor cost associated with each pick attempt at each 
store. This primarily depends on the wages in the store 
and any excess workload that may have accumulated 
because of an inflexible workforce. Finally, if too many 
attempts to route the item have failed, we incur a pre-
defined delayed cancellation cost per item cancelled. Note 
that the delayed cancellation involves an order that is 
attempted to be picked (potentially several times) and 
failed, whereas the regular cancellation cost is incurred 
when it is cancelled without any attempt to fulfill. 
Because the former involves a delayed communication 
of a negative (cancellation) event, the delayed cancella-
tion cost is typically set higher than the cancellation cost.

We describe the order fulfillment models under pick 
failure for the OMS under stochastic online and physical 
demand, and extend one of them to devise order accep-
tance policies incorporating pick failures in the scheme 
of Karp (2017) and Jia et al. (2022). We restrict our study 

to single-SKU orders to simplify the problem. (We note 
that single-SKU orders are known to form the bulk of 
online orders in practice.) Recall that online orders are 
attempted to be filled in several stages. The input to each 
of our models is the pick-failure probability as a function 
of inventory level at each store at each stage. We make 
the assumption that the pick-failure probability for an 
SKU at a store is a nonincreasing function of available 
inventory at the store. This is natural because inventory 
inaccuracy at low inventory levels is more likely to cause 
a pick failure (as seen in Figure 1). The other inputs to the 
models are the various cost components.

We propose three order fulfillment models where 
physical and online demand are both sparse, the physi-
cal demand is dense, and both demands are dense, 
respectively. We then extend the third model to incorpo-
rate the order acceptance decision. 

1. In Section 2, we model the online order fulfillment 
problem when the physical and online demands are sparse. 
Sparse online and physical demands ensure that fulfilling 
these demands does not significantly impact the inventory 
level at stores. Given this sparsity, the OMS can make real- 
time multistage fulfillment decisions for an accepted 
online order. The fulfillment decision for an accepted 
online order is a sequence of stores that minimizes 
the expected fulfillment cost. In computing the fulfill-
ment cost, the pick failure-probability for a store is 
determined using the current inventory levels at the 
stores and is assumed to remain the same in future 
stages in this case of sparse demands. We provide a 
polynomial time dynamic programming–based algo-
rithm to solve for the optimal fulfillment decision 
based on a simple observation about the structure of 
optimal solutions.

2. In Section 3, we generalize the previous model by con-
sidering stores that have nonsparse physical demand. Sim-
ilar to the previous model, the sparsity of online orders 
implies that the fulfillment decisions of online orders do 
not significantly influence one another. Again, the OMS 
can make real-time multistage fulfillment decisions for an 
accepted online order. Using the current inventory level, 
the distribution of nonsparse physical demands at various 

Figure 2. Timeline for Three-Stage (Day) Single-Order Models in Sections 2 and 3

Note. Dotted arrows feature in Section 3.
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stores, and the pick-failure probability function, the OMS 
can estimate the future pick-failure probabilities at the 
stores in subsequent stages. The fulfillment problem to 
determine the optimal sequence of stores for an accepted 
online order is solved by considering the fulfillment costs 
and the imputed pick-failure probabilities for stores across 
stages. We improve upon the naive dynamic program-
ming algorithm for this case and provide an efficient solu-
tion with much better complexity.

3. In Section 4, we propose a general fulfillment 
model with nonsparse physical and online demand. 
Multiple online orders for the same SKU accepted from 
various customer shipping zones are to be either can-
celled or fulfilled using inventory at multiple stores. 
The inventory at the stores is shared by the online and 
physical demands. Because the online orders are no 
longer sparse, we assume that fulfillment decisions 
for all the accepted online orders are made and executed 
at the end of a day by the OMS after physical demands at 
stores have been satisfied (thus giving implicit preference 
for physical demand at each location). Because of the 
complexity of the problem, we consider only the single- 
stage version of the fulfillment problem, where the 
first pick failure of an order leads to cancellation with-
out retrials (see Figure 3). We provide a network-flow- 
based algorithm to solve this fulfillment problem.

4. Finally, we propose the joint order acceptance and 
fulfillment model with nonsparse physical and online 
demand. The two decisions in the model are (i) real-time 
acceptance/rejection for an online order originating from 
various customer shipping zones and (ii) fulfillment deci-
sions involving store assignment for the accepted orders 
after physical demand at the stores has been satisfied. 
The real-time acceptance/rejection decision involves 
setting a threshold on the online orders that can be 
accepted. In addition to accounting for fulfillment cost of 
an accepted online order as modeled above, the joint 
acceptance and fulfillment model accounts for the trade- 
off between the lost sales and cancellation cost for a 
rejected and cancelled online order, respectively. We 
model the problem as a two-stage stochastic program 

where the first stage involves the acceptance/rejection of 
online orders and the second stage deals with the opti-
mal fulfillment decisions for the accepted orders that can 
be attempted for fulfillment. Our fulfillment model in 
Section 4 can be conveniently adapted to solve this sec-
ond stage problem while incorporating pick-failure costs. 
Using this to calculate gradients, we propose an Infinites-
imal Perturbation Analysis–based method algorithm to 
efficiently solve the joint acceptance and fulfillment prob-
lem (Section 5).

Table 1 summarises the four models in the paper.

1.2. Related Work
1.2.1. Omnichannel Fulfillment. Xu et al. (2009) consid-
ered the reconsolidation of as-yet unshipped orders to 
minimize the number of shipments.

Acimovic and Graves (2014) study the problem of ful-
fillment decisions in real-time, as opposed to batched 
processing. Their work is similar to ours because it is 
derived from the retail use case. Their focus is to model 
future demand and the potential resulting splits of 
multi-item orders that could occur in the future because 
inventory could be depleted suboptimally without 
considering correlation among the demands for items 
in future orders. Although their model assumes no inven-
tory inaccuracy or pick failure, we focus on optimally 
solving the current order that needs to be fulfilled, with 
the possibility of pick failure at stores. We have kept our 
models oblivious to future orders, but stochastic from a 
current order’s evolution perspective, while restricting 
our study to single-item orders.

Markowicz (2017) models the batched version of the 
fulfillment problem using replenishment and in-store 
demand, studies the trade-offs between distribution cen-
ter and store fulfillment, and finds routing strategies heu-
ristically using a linear program (LP) that increases 
profitability. Their work primarily focuses on the benefits 
of batching orders for fulfillment, whereas we focus on 
near real-time fulfillment decisions that are more perti-
nent in a retail environment.

Figure 3. Timeline for Multiunit Orders (Sections 4 and 5) 

Note. Dotted arrows feature in Section 5.
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The work of Jasin and Sinha (2015) is close to our work 
in that they minimize the picking and shipping cost of 
items. They consider a batch of multi-item orders with 
inventory constraints at fulfillment centers/stores. Jasin 
and Sinha (2015) incorporate a shipping function that has 
a fixed component and a variable component. They for-
mulate the fulfillment problem as a linear program and 
modify the solution of the LP using correlated rounding 
(or coupling) among the decision variables. The motiva-
tion behind correlated rounding is to consolidate items 
and, therefore, reduce the number of shipments similar in 
spirit to Xu et al. (2009). Our model differs from theirs as 
we explicitly model pick failure (and therefore allow mul-
tiple trials) and solve the problem for single orders as 
they arrive rather than batches. The work in Jasin and 
Sinha (2015) has been extended to joint pricing and fulfill-
ment in Lei et al. (2018a) and further to the joint pricing, 
display, and fulfillment problem in Lei et al. (2018b).

Harsha et al. (2019) study the problem of price optimi-
zation under an omnichannel framework to unify the 
in-store and online prices. In their work, they mitigate 
pick failure by prescribing a thresholding policy that 
does not allow order fulfillment from a store when 
inventory goes below a threshold. In contrast, in our 
work, we assume probabilities of pick failure for stores 
are given typically as a function of inventory. Karp 
(2017) has discussed the estimation of pick-failure proba-
bilities as a function of inventory from data.

Acimovic and Farias (2019) and Andrews et al. (2019) 
optimize total reward earned from feasibly fulfilling all 
orders that arrive at the system over a finite horizon. 
They formulate the problem as a large dynamic program-
ming problem and use approximate dynamic programming 
techniques to make the problem tractable by assuming 
a separable reward function for each item.

1.2.2. Omnichannel Acceptance to Mitigate Failures. The 
features we model and study, like pick failure and multi-
ple trials for order fulfillment, have not been considered 
explicitly in prior work. The closest work that has tried to 
circumvent pick failure in the literature is Harsha et al. 
(2019) who have a threshold inventory level below 
which items ordered online are not attempted to be 
picked at stores. Karp (2017) provides policies for comput-
ing such threshold inventory levels optimally or nearly 
so based on the knowledge of the demand distributions 

corresponding to online and in-store walk-in demand. In 
batch processing (Acimovic and Farias 2019, Andrews 
et al. 2019), one might argue that pick failure is considered 
implicitly in the sense that it is less likely for (real) inven-
tory at a store to go to zero over the longer horizon for 
batch processing due to replenishment. However, the 
batch processing model provides limited decision sup-
port for routing real-time orders dynamically that are 
the norm in modern omnichannel order systems.

Our work is also the first to integrate pick-failure con-
sideration into the tactical fulfillment problem and use 
this in extending the order acceptance problem formu-
lated in Karp (2017) to incorporate pick failures in the ful-
fillment cost. This allows us to realistically adjust the 
thresholds for online order acceptance more conserva-
tively by incorporating the additional costs of fulfillment 
that have not been modeled in prior work.

2. Single Order: Static Pick-Failure 
Probabilities

In this section, we model an OMS making real-time ful-
fillment decisions for online orders when online and 
physical demands are sparse. Low demand leads to sta-
ble inventory levels at stores. Therefore, the pick-failure 
probabilities at stores are assumed to be constant across 
the stages of fulfillment of the current order. We formally 
describe the multistage single-order fulfillment model 
and provide a polynomial time dynamic programming 
algorithm to solve the fulfillment problem optimally 
based on a structural result.

Consider fulfilling an online order from a fulfillment 
network of J stores in L stages. At each stage, an attempt 
to pick the order incurs a fixed attempt cost bj at store j 2
[ J] where [ J] denotes {1, 2, : : : , J}. A pick attempt at store 
j fails with probability φj, which is independent of the 
attempts at any other store and of the stage of fulfillment 
trial using our assumption of sparse demand. If the pick 
attempt at store j is successful, a shipping cost sj is 
incurred. In the event of a pick failure, we proceed to the 
next stage or attempt. Finally, after L pick attempts, we 
terminate paying a delayed cancellation cost of d.

We define the unreliability factor rj for store j to be 
rj à sj + bj

1�φj
. A fulfillment policy σ�is a (nonrepeating) 

sequence of L stores where σ(l) represents the store tried 

Table 1. Features of Models Studied in the Paper

Model Section Online demand Physical demand Stages Solution method

Single-order static-pick-fail fulfillment (Section 2) Sparse Sparse Multiple DP
Single-order dynamic-pick-fail fulfillment (Section 3) Sparse Dense Multiple DP
Multiorder fulfillment (Section 4) Dense Dense Single Net-flow
Multiorder acceptance & fulfillment (Section 5) Dense Dense Single IPA

Note. DP, dynamic programming; IPA, infinitesimal perturbation analysis; Net-flow, network flow.
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in stage l. The expected cost V(σ) of fulfillment policy σ�
can be expressed as follows (with the convention that 
φσ(0) à 1).

V(σ) à
"
XL

là1

Yl�1

l0à1
φσ(l0)

 !

· [bσ(l) +
�
1� φσ(l)

⇥
sσ(l)]

#

+
� YL

là1
φσ(l)

 !

· d
�

(1) 

à
XL

là1

Yl�1

l0à1
φσ(l0)

 !

· [(1� φσ(l)) · rσ(l)]
|ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ{zÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ}

expected cost at stage l if pick success

2

66664

3

77775

+
�⌘YL

là1
φσ(l)

✓
· d
�

|ÉÉÉÉÉÉÉÉÉÉÉÉ{zÉÉÉÉÉÉÉÉÉÉÉÉ}

cancellation cost
expected

(2) 

The objective is to determine the policy σ⇤ that minimizes 
expected fulfillment cost.
Lemma 1. Let σ⇤ be the optimal L-stage policy. Then, rσ⇤(l)
< rσ⇤(l+1) for any l in 1, : : : , L� 1. In words, the unreliabil-
ity factor of a store in the optimal policy is lower than that 
of all subsequent stores in that policy.

The proof relies on the fact that swapping a store with 
higher rj value tried at an earlier position with a store 
with lower rj value tried at a later position yields a policy 
with lower fulfillment cost.

From Lemma 1, it may seem that the optimal policy is 
simply trying the first L stores ordered in nondecreasing rj 
values. However, this is false because of the effect of the 
delayed cancellation cost d in the overall cost, which we 
illustrate with a simple counterexample. Consider a one- 
stage problem with two stores, say store 1 and store 2, such 
that (r1, r2) à ($10, $15), (φ1,φ2) à (0:9, 0:2) and d à $30. 
We have V(1) à $28, whereas V(2) à $18 even though 
r1 < r2.

2.1. Dynamic Program
We propose a dynamic program to solve the problem 
using the Lemma 1. Reorder the set of stores [ J] in nonde-
creasing order of rj—this can be done in O( J log J) time. 
Define W( j0, l0) to be the fulfillment cost of the optimal 
subsequence of l0 remaining picks to be performed as a 
subsequence of the set of stores [ j0, j0 + 1, : : : , J] in this 
order, for j0 ranging from one to L. By Lemma 1, these val-
ues obey the following recurrence.
W( j0, l0) à min

j2[ j0, : : : , J�l0]
{(1� φj) · rj +φj · W( j + 1, l0 � 1)}

Note that W( j, 0) à d for all stores j 2 [ J]. Because we 
index the optimal values in the subproblems by stores 
and stages, there are J · L such values and each one can be 

computed by examining up to J terms giving a total run-
ning time O(J2L).
Theorem 1. For the single-order fulfillment problem under 
pick failure with J stores and L stages, there exists an 
O(J2L) time algorithm to compute the optimal fulfillment 
policy.

3. Single Order: Dynamic Pick-Failure 
Probabilities

In this section, we expand the scope of the OMS decisions 
from Section 2 by considering stores with dense physical 
demand but sparse online demand. Because the online 
demand is sparse, each accepted online order must be 
filled before the next one; thus, the requirement of real- 
time fulfillment decisions for an incoming order is justi-
fied. We generalize the result of the last section to the 
case when the pick-failure probabilities at stores in sub-
sequent stages vary because of inventory depletion from 
incoming physical demand.

We generalize the notation φj used in Section 2 for 
pick-failure probability at store j to φjl for pick-failure 
probability at store j at stage l. If there is no replenish-
ment at store j, we would expect φjl to be nondecreasing 
as a function of l; but we make no assumptions on these 
functions in our solution below. Similar to the fulfillment 
policy in Section 2, σ�is a sequence of stores such that σ(l)
represents the store tried in stage l. The expected cost of 
fulfillment policy σ�for the L stage problem with dynamic 
pick-failure probabilities is

V(σ) à
XL

là1

Yl�1

l0à1
φσ(l0),l0

 !

· [bσ(l) + (1� φσ(l),l)sσ(l)]
" #

+
YL

là1
φσ(l),l

 !

· d
" #

(3) 

à
"
XL

là1

 
Yl�1

l0à1
φ�
σ(l0),l0

⇥
!

· [(1� φσ(l),l) · rσ(l),l]
#

|ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ{zÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ}
expected cost from picking and shipping

+
"⌘YL

là1
φσ(l),l

✓
· d
#

|ÉÉÉÉÉÉÉÉÉÉÉÉÉ{zÉÉÉÉÉÉÉÉÉÉÉÉÉ}
cancellation expected cost

:
(4) 

The objective is to determine the policy that minimizes 
expected fulfillment cost minσV(σ). We introduce a nota-
tion σ[l : L], which denotes a sequence of nonrepeating 
stores for stages l through L.

3.1. A Natural Dynamic Program
A natural dynamic programming algorithm for the prob-
lem would use O(JL) states: we consider all J stores for the 
first stage of fulfillment; for each of these J stores, we have 
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a choice of J � 1 choices for the next stage. Proceeding this 
way, the number of states in stage L grows to J · J � 1 ⋯ ( J � L) à J!=L! àO(JL). In typical instances, the num-
ber of potential stores for fulfillment J� L, the number of 
stages of fulfillment. Hence, we devise a different DP 
algorithm with running time O( J log J · L!), which is much 
faster in this regime.
Lemma 2. Let σ⇤ be the optimal L-stage fulfillment policy. 
Among all stores j 2 J \ σ⇤[l + 1, L], let J l be the set of l 
stores that achieve the l lowest values of (1� φjl) · rjl +φjl·
V(σ⇤[l + 1 : L]). Then, there exists a store j 2 J l such that 
σ⇤(l) à j.

Proof. Consider the set J l
0 à J l \ {σ⇤(1), : : : ,σ⇤(l� 1)}. 

Because |J l| à l, there exists a store j 2 J l
0. Suppose 

σ⇤(l) à j0 such that j0 � J 0l . Substituting j0 with j will yield 
a lower cost policy than V(σ⇤) giving a contradiction. w

3.2. A More Efficient DP
We proceed in stages from stage L to stage 1. A node or 
state in stage l is represented by (σ[l : L]) with value 
V(σ[l : L]). Construct a dummy node (NULL) for initial 
stage L + 1 with value V(NULL) à d. We start with stage L 
and obtain J L, the set of L stores with the lowest values 
of (1� φjl) · rjl +φjl ·V[(NULL)] among stores j 2 J. For 
each of these L stores, we create nodes (j) with value V( j).

We proceed in this fashion for an arbitrary stage l. 
Consider a node in stage l + 1, (σ[l + 1 : L]) with value 
V(σ[l + 1 : L]). We obtain J l, the set of L stores with the 
lowest values of (1� pj0l) · rj0l +φj0l ·V(σ[l + 1 : L]) among 
stores j0 2 J \ σ[l + 1 : L]. For each such node j0 2 J l create 
a node σ[l : L] à j0 [ σ[l + 1 : L]) with value Vl( j0 [
σ[l + 1 : L]) equal to that of trying j0 in level l followed by 
the sequence σ[l + 1 : L] in the following stages. See 
Algorithm 1 for details.
Algorithm 1 (Algorithm to Solve the L-Stage Fulfillment 
Problem)

Input: [ J], [L], d,φjl and rjl ∀j 2 [ J], l 2 [L]
Output: σ⇤,V(σ⇤)

1: Create a dummy node at stage L + 1, (NULL)
2: V(NULL) d.
3: for stage l in L, : : : , 1 do
4: for all nodes (σ[l + 1 : L]) in stage l + 1 do
5: J̃ [ J] \ σ[l + 1 : L]
6: for j0 2 J̃ do
7: U[ j0] (1� φj0l) · rj0l +φj0l ·V(σ[l + 1 : L])
8: J l l stores in J̃ with lowest values of U[ j0]

store j 2 J̃ (Break ties arbitrarily).
9: for all j 2 J l do

10: σ[l : L] j [ σ[l + 1 : L]
11: Create node (σ[l : L]) in stage l
12: V[σ[l : L]] U[ j]
13: σ⇤  arg minσ[1:L]V(σ[1 : L])
14: V(σ⇤) minσ[1:L]V(σ[1 : L])

3.3. Time Complexity of Algorithm 1
For each node in stage l + 1, (i) we generate a set of l nodes 
J l and then (ii) create l nodes in this stage. The sorting 
according to the value of U takes O( J log J) time. There 
are L!=(l� 1)! nodes in stage l, so constructing stage l along 
with the values of all the nodes in it takes O L!

l! J log J
� ⇥

time. 
Stage 1 takes the maximum time O(L! · J log J).
Theorem 2. There exists a O(L! · J log J) algorithm that 
finds the optimal fulfillment policy for the L-stage fulfill-
ment problem when the pick-failure probabilities at stores 
vary across stages.

Note that Algorithm 1 also solves the L-stage fulfill-
ment problem with static pick-failure probabilities across 
stages in O(L! · J log J) time as an alternate to the 
Dynamic Programming algorithm in Section 2, which 
solves the problem in O(J2L) time and hence will be 
faster when J� L!.

4. Multiple Orders with Single Stage of 
Fulfillment

Let us consider the fulfillment problem where online 
demand accepted from various customer shipping zones 
and physical demand arising at stores are nonnegligible 
and hence must be accounted for their effect on inventory 
depletion, which in turn influences the pick failures. We 
describe the fulfillment problem in the time frame of a 
day to simplify the exposition. During the day, the retailer 
observes stochastic online demand from customer ship-
ping zones and stochastic physical demand at stores. Dur-
ing the day, the online demands originating from various 
zones are accepted/rejected in real time. We defer the 
modeling of this real-time acceptance/rejection decision 
to the next section. For now, we assume that we are given 
the accepted online orders at various locations as input to 
our model. Retailers typically avoid making real-time ful-
fillment decisions for accepted online orders for the fol-
lowing reasons. 

1. Pick attempts at stores during the day hampers the 
daily operations of a store.

2. Holding online orders until the end of the day pre-
vents cases when physical demand at a store is unful-
filled on account of satisfying online demand.

3. A real-time fulfillment decision made for an ac-
cepted online order impacts the inventory at the assigned 
store and therefore affects the fulfillment decision of sub-
sequent online orders. Thus, making real-time fulfillment 
decisions for each accepted online order could potentially 
lead to suboptimal fulfillment decisions compared with 
batching them at the end of the day.

For efficient fulfillment planning, the OMS accumu-
lates all accepted online orders until physical demands 
at stores have been satisfied, typically by the end of the 
day. The inputs to the fulfillment model are AO

i , i.e., the 
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number of online orders accepted from customer ship-
ping zone i 2 [I] and QP

j , i.e., the inventory level at store j 
at the end of the day. At fulfillment time, an online order 
accepted from customer shipping zone i is either can-
celled incurring a cancellation cost ci or attempted for ful-
fillment at one of the stores in the fulfillment network. 
An order accepted from zone i that is attempted for ful-
fillment at store j (i) incurs a labor cost bj for the pick trial, 
(ii) a shipping cost sij if it is found and shipped, and (iii) a 
delayed cancellation cost di if the pick attempt(s) was 
unsuccessful and the order was eventually cancelled. 
(Note that we may assume without loss of generality 
that di � ci.) Thus, the expected fulfillment cost of an 
online order at a store depends on the pick-failure proba-
bility, which is a function of the inventory level at the 
store during the pick attempt. For store j, we define a 
pick-failure probability φj(q) as a function of the store’s 
inventory level q. Note that if there is no inventory, then 
φj(0) à 1, meaning picks will always fail. We use a natu-
ral assumption that the pick-failure probability for an 
item at a store is a nonincreasing function of available 
inventory at the store.
Assumption 1. φj(q) is a nonincreasing function of inven-
tory level q at store j.

The inventory level at stores in the future stages of ful-
fillment depends on the fulfillment decision (assignment 
of accepted online orders to stores) and the outcome of 
the various pick attempts. This makes it hard to model 
the problem for multiple stages of pick attempts. We 
therefore restrict ourselves in this section to a single- 
stage model in which a failed pick attempt of an online 
order leads to cancellation without retrials.

We define the expected fulfillment or trial cost of an 
order from customer shipping zone i at store j when its 
inventory level is q as follows.

tij(q) à bj + [1 � φj(q)] · sij + φj(q) · di 

A successful pick attempt for an online order decreases 
the inventory level by one, whereas a failed attempt does 
not impact the inventory level. (Note that we do not 
allow replenishment in our model.) It follows that the 
inventory level at which an online order assigned to a 
store is tried depends on the pick success/failure out-
come of the online orders tried before at the same store. 
Therefore, the inventory level at which an order is 
attempted depends on its position among all the other 
online orders that are also tried at the same store. We 
introduce the index k to represent the position of an 
online order among all the other online orders that are 
assigned to be tried at that store. An online order with 
position k at store j is simply the kth online order that is 
assigned to be tried at store j.

To account for potential drops in the inventory levels 
during the pick attempts for online orders, we define 

QO
jk , which represents the (random) inventory level at 

store j when the kth online order is tried at store j. We can 
now define tijk(QP

j ) as the expected trial cost for an order 
from customer shipping zone i if it is the kth order 
assigned to be tried at store j as follows. Because location 
j starts with physical inventory QP

j at the end of the day, 
when the kth online order is tried, its inventory value 
must lie in the range [QP

j � (k � 1), QP
j ].

tijk(QP
j ) à

XQ
P
j

qàQP
j �(k�1)

Pr[QO
jk à q] · tij(q) (5) 

The expression for the expected fulfillment cost can be 
simply seen as the sum of expected fulfillment costs at 
potential inventory levels for an order tried at position k 
weighted by the likelihood of those inventory levels 
when this order is tried.

A fulfillment policy is an assignment of accepted orders 
to either a store for fulfillment or for cancellation. The 
objective is to compute the fulfillment policy that mini-
mizes the cancellation and expected fulfillment cost. In 
the absence of pick failure, the fulfillment problem can 
be modeled as a network flow problem (Karp 2017). This 
approach cannot be directly extended to account for pick 
failures because the fulfillment costs for different online 
orders assigned to a store are no longer identical but 
depend on their trial position. In this section, we show 
that even under pick failure, the fulfillment costs for try-
ing online orders at a store are convex, which still makes 
the problem amenable to a network flow formulation.

We now state a key lemma that implies the convexity of 
the fulfillment costs and is proved (in Online Appendix 
A.2) using the intuition that it is costlier to try an online 
order at a later position in a store that will be at a more dis-
advantageous inventory position.
Lemma 3. Under Assumption 1, tijk(QP

j ) is nondecreasing 
in k.

4.1. Linear Program
We now describe a linear program to solve the fulfillment 
problem. Define xijk to be a (binary) variable that takes the 
value one if an accepted online order from customer ship-
ping zone i is assigned to be the kth online order attempted 
for picking at store j after all the physical demand at store j 
is satisfied and zero otherwise. Recall that a successful 
pick attempt reduces the inventory level at a store by one. 
This implies that any order assigned to a store in a posi-
tion higher than QP

j is only tried at inventory level zero, 
incurring a delayed cancellation cost. Because the (regu-
lar) cancellation cost is no more than the delayed cancella-
tion cost, it is suboptimal to try to fulfill an order at a store 
at nonpositive inventory levels. Therefore, we can restrict 
the index k for the decision variable xijk up to QP

j .
The fulfillment objective function minimizes the sum 

of cancellation and expected fulfillment costs. Each 
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accepted order can either be assigned to a store for ful-
fillment or cancelled.
X

i2[I]

X

j2[ J]

X

k2[QP
j ]

tijk(QP
j ) ·xijk +

X

i2[I]
ci ·
 

AO
i �

X

j2[ J]

X

k2[QP
j ]

xijk

!

|ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ{zÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ}
orders cancelled at fulfillment 

The objective function can be rearranged and written as
X

i2[I]
ci · AO

i

|ÉÉÉÉÉÉ{zÉÉÉÉÉÉ}
constant

+
X

i2[I]

X

j2[ J]

X

k2[QP
j ]
[tijk(QP

j ) � ci] · xijk:

We can interpret this expression as if we incur a cancella-
tion cost for all accepted orders and then incur the 
expected fulfillment cost minus the savings of the cancel-
lation cost for the orders that are assigned to stores for 
fulfillment. Because the first term in the objective func-
tion does not involve decision variables xijk, we can 
rewrite the mathematical programming formulation of 
the fulfillment problem as follows.
X

i2[I]
ci · AO

i + min
xijk

X

i2[I]

X

j2[ J]

X

k2[QP
j ]
[tijk(QP

j ) � ci] · xijk (6) 

such that
X

j2[ J]

X

k2[QP
j ]

xijk  AO
i ∀i 2 [I] (7) 

X

i2[I]
xijk  1 ∀j 2 [ J], k 2 [QP

j ] (8) 

xijk 2 {0, 1} ∀i 2 [I], j 2 [ J], k 2 [QP
j ]

(9) 
Constraints (7) ensure that the number of orders assigned 
from each zone to stores are lower than the number of 
orders accepted from that zone. Constraints (8) ensure 

that at most one order can be assigned to each position at 
each store.
Theorem 3. For the multiple-unit fulfillment problem 
under pick failure with I zones and J stores, if the trial costs 
tijk can be estimated efficiently, then the optimal fulfillment 
policy can be computed by solving a min-cost circulation 
problem with O(I + JK) nodes and O(IJK) arcs, where 
K àmaxj2[ J]QP

j .
Proof. We show that the integer program (6) can be for-
mulated as a min-cost circulation problem and therefore 
solved efficiently. To construct the formulation as a mini-
mum cost circulation problem (see Figure 4), we join a 
new source node to nodes corresponding to zone i 2 [I]
with arcs of capacity AO

i and cost zero. Connect zone 
node i with node ( j, k) representing store j 2 [ J] in posi-
tion k 2 [QP

j ] with arcs of cost tijk � ci. Finally, we connect 
nodes ( j, k) to a new sink node with zero-cost capacity-1 
arcs. Using Lemma 3, we see that if any flow is assigned 
to store j at position k (i.e., going via the node labelled 
(j, k)) in a minimum-cost circulation, then we can assume 
that there must be unit flow in all nodes of lower index 
( j, k0) for k0 < k; otherwise, the same flow routed through 
a lower index position has no larger cost. Thus, any opti-
mal solution to the circulation problem gives a feasible 
fulfillment schedule for all accepted orders.

Observe that an online order accepted from zone i is 
assigned to position k at a store j if the expected fulfill-
ment cost of that order is lower than the cancellation 
cost, i.e., tijk < ci. Consequently, the optimal circulation 
will have negative cost corresponding to the second 
term in the objective function (6).

Thus, when the trial costs tijk on the arcs is given, 
using known algorithms for solving minimum cost 

Figure 4. (Color online) Network Flow Formulation for Multiple Online Order Fulfillment 

Note. Arcs are labelled with cost, [lower bound, upper bound] of the flow.
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circulation, such as Tardos (1985), we can obtain an 
optimal solution to the fulfillment problem in time 
polynomial in I, J, and K. w

Even though the fulfillment problem can be written as 
a min-cost circulation problem with polynomial number 
of nodes and arcs, the problem may not be solvable in 
polynomial time because of the complexity in computing 
the cost of the arcs under a general decreasing pick- 
failure probability function. In Online Appendix B, we 
describe how we can compute these probabilities by 
making some simplifying assumptions. In particular, we 
fit a simple parametric one-step function to the data pro-
vided for the pick-failure probability φj at store j as a 
function of the initial inventory and the current trial 
number k and use this to evaluate the expected trial 
cost tijk. In other words, rather than use the more 
complex expression in Equation (5), we use tijk(QP

j ) à
bj + (1� φj) · sij +φj · di for k large enough and bj + sij 
otherwise.

5. Joint Acceptance and Fulfillment with 
Stochastic Demands

We generalize the fulfillment problem in the previous 
section by integrating the online order acceptance deci-
sion into the model. We also extend the joint acceptance 
and fulfillment problem studied by Karp (2017) by incor-
porating pick failure. As in the previous section, we 
restrict our focus to a single-stage fulfillment model 
where a failed pick attempt of an online order leads to 
cancellation without retrials.

We continue with the time frame of a day to describe 
the joint acceptance and fulfillment problem. During the 
day, the retailer observes stochastic online demands DO

i 
from zone i 2 [I] and stochastic physical demands DP

j at 
stores j 2 [ J]. Let the inventory at the beginning of the 
day at store j be Qj. The decision making of the OMS 
occurs in two stages. The online demands originating 
from various zones during the day are accepted/rejected 
in real time, and then the fulfillment decisions for all the 
accepted online orders are made at the end of the day.

5.1. Costs
In the previous section, we studied the trade-off between 
trying to fulfill an accepted order (incurring an expected 
fulfillment cost, which can be negative) and cancelling 
an accepted order (incurring a cancellation cost). Because 
the decision to accept/reject an online order is now in the 
purview of our model, we have to take into account the 
lost-sales cost associated with rejecting an order that 
could have been fulfilled. As a result, each unit of online 
demand up to the total inventory minus total physical 
demand incurs one of the following costs: lost sales if it is 
rejected, cancellation cost if it is accepted but not tried for 
fulfillment, and expected fulfillment cost when it is tried. 

The notations of all the cost components carry over from 
the previous section with the exception of lost-sales cost, 
which we introduce in this section. As in Karp (2017), we 
use the profit margin p as the lost-sales cost for an online 
order.

5.2. Order Acceptance Policies
We follow Karp (2017) and consider the following clas-
ses of thresholding policies for real-time acceptance/ 
rejection of online orders. 

1. Global Threshold Policy: The retailer enforces a 
global threshold on the total number of online orders 
that can be accepted. In practice, the retailer ceases to 
offer the product online once the designated number of 
online orders has been accepted.

2. Local Threshold Policy: In the local threshold pol-
icy, the retailer accepts an online order up to a local 
threshold designated for each customer zone i.

We first describe a simple version of the problem in 
Section 5.3 and then proceed to solve the general prob-
lem in Section 5.4.

5.3. Simple Model: One Store and One Customer 
Shipping Zone

We describe the joint order acceptance and fulfillment 
problem under pick failure with one store and one cus-
tomer shipping zone. Let QP àmax{0, Q �DP} be a 
random variable representing the inventory level at the 
store after physical demand DP has been satisfied. Let S 
be the decision variable that represents the threshold on 
the number of online orders that can be accepted. Note 
that in this simple variant, the global and local threshold 
policies coincide. Our objective is to determine the opti-
mal threshold S such that the cancellation and expected 
fulfillment costs are minimized. The number of accepted 
online orders is min{DO, S}. We use the following 
assumption.1

Assumption 2 (Cost Structure). The cost of trying to fulfill 
an order is less than the cancellation cost, i.e., tk(QP) < c ∀k.

Under the assumption that expected fulfillment cost 
is lower than cancellation cost, it is optimal to try fulfill-
ment of accepted online orders up to inventory QP at 
the store for fulfillment. The number of such orders is 
min{DO, S,QP}. The remaining accepted orders not 
assigned for trial are naturally cancelled. The number 
of such orders is min{DO, S}�min{DO, S,QP}.

The lost-sales cost is incurred on orders that are 
rejected but could have been tried for fulfillment. The 
number of such orders can be expressed as the minimum 
of the number of orders that are rejected and the inven-
tory at the store after physical demand and online orders 
assigned for trial at the store. The joint order acceptance 
and fulfillment problem reduces to solving the following 
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(one-stage) stochastic program.

min
S

�DO,DP

"
Xmin{DO, S,QP}

kà1
tk(QP) + c · [min{DO, S}

� min{DO, S, QP}]
#

+ �DO,DP[p · min{DO � min{DO, S}, QP

� min{DO, S, QP}}] (10) 

Lemma 4. The objective function (10) is unimodal in S.

This lemma is proved by examining the effect of a unit 
change in S on the objective using its derivative and its 
properties. The proof is in Online Appendix A.3.
Corollary 1. The optimal threshold for the single store prob-
lem with no shipping and base trial costs in the absence of pick 
failure, as obtained by Karp (2017), is greater than S⇤.

The corollary is proved using the observation that tri-
als are less profitable in the presence of pick failure. The 
proof is in Online Appendix A.4.

Using the closed form expression for the derivative of 
the objective function and the fact that the objective func-
tion is unimodal in S (and hence quasi-convex), we can 
apply gradient descent methods to solve the problem to 
optimality.

5.4. General Model: Multiple Stores and Zones
5.4.1. Order Acceptance Thresholds as Decision Vari-
ables. With some abuse of notation,2 let S be the decision 
variable representing the threshold on the number of 
online orders that can be accepted. In the global threshold 
class, up to S orders (originating from any customer ship-
ping zone) are accepted. In the local threshold class, up to 
Si orders from customer shipping zone i are accepted, and 
the remaining orders (if any) are canceled in real time.

5.4.2. Objective Function with Costs. Let AO
i (S) be a 

random variable representing the number of online orders 
accepted from zone i. Let QP

j àmax{0, Qj �DP
j } be the 

random variable that represents the inventory level at store 
j at the end of the day after physical demands at stores 
have been satisfied. We can write the objective function in 
terms of the decision variables and cost components as fol-
lows. We use the notation from previous sections.
X

i2[I]
ci · AO

i (S) +
X

i2[I]

X

j2[ J]

X

k2[QP
j ]
[tijk(QP

j )� ci] · xijk(S)

+p · min
X

i2[I]
(DO

i �AO
i (S)),

X

j2[ J]
QP

j �
X

k2[QP
j ]

xijk(S)

0

B@

1

CA

8
><

>:

9
>=

>;

(11) 
Observe that the first two terms are identical to the 
expression of the objective function in the LP (6), with 

accepted orders and inventory after physical demand as 
random variables. The third term represents the lost 
sales cost. Observe that the expression (11) is nonlinear 
in AO

i (S) and therefore nonlinear in S. We rewrite the 
objective. We rearrange the expression to get the follow-
ing expression that is linear in AO

i (S).

p · min
X

i2[I]
DO

i ,
X

j2[ J]
QP

j

8
<

:

9
=

;+
X

i2[I]
ci · AO

i (S)

+
X

i2[I]

X

j2[ J]

X

k2[QP
j ]
[tijk(QP

j )� ci � p] · xijk(S) (12) 

The interpretation for expression (12) is via an alternate 
order of accounting for the costs: first, we incur lost-sales 
cost for every online demand up to the total inventory in 
the network after physical demand; Then, we incur a 
cancellation cost for every accepted order. Finally, we 
incur expected fulfillment cost minus cancellation cost 
minus lost-sales cost (as savings) for every order assigned 
to a store for trial.

5.4.3. Two-Stage Stochastic Program. The joint order 
acceptance and fulfillment problem can be modeled as a 
two-stage stochastic program, with the first stage as the 
order acceptance problem where the random variables 
are the physical and online demands and the second 
stage as the fulfillment problem. The first stage can be 
written as

min
S

p · �DO,DP min
X

i2[I]
DO

i ,
X

j2[ J]
QP

j

8
<

:

9
=

;

2

4

3

5

+ min
S

�DO,DP[G(S)]: (13) 

The second stage problem is

G(S) à
X

i2[I]
ci · AO

i (S)

+ min
xijk(S)

X

i2[I]

X

j2[ J]

X

k2[QP
j ]
[tijk(QP

j ) � ci � p] · xijk(S),

(14) 
s:t:

X

j2[ J]

X

k2[QP
j ]

xijk(S)AO
i (S) ∀i2 [I], (15) 

X

i2[I]
xijk(S) 1 ∀j2 [ J],k 2 [QP

j ], (16) 

xijk(S)� 0 ∀i2 [I], j2 [ J],k 2 [QP
j ]: (17) 

Observe that the linear program (14) is identical to the 
linear program (6) with the exception that the savings of 
the lost sales cost for a tried order has been added in this 
LP. An order accepted from zone i is tried at position k in 
store j only if the cost of fulfillment is lower than the sum 
of cancellation and lost-sales cost. The proof of validity 
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of the linear program (14) is identical to the proof of cor-
rectness of the linear program (6).
Lemma 5. For a global threshold policy, �[G(S)] in the 
objective function (13) is unimodal in S.

Lemma 6. For a local threshold policy, �[G(Si)] in the 
objective function (13) is unimodal when all other local 
threshold parameters, Si0 for i0 ≠ i, are fixed.

The proof of the first lemma appears in Online Appen-
dix A.5, whereas the second uses a similar argument.

Lemma 7. �[G(S)] for global threshold and �[G(Si)] for 
local threshold (when all other local threshold parameters, 
Si0 for i0 ≠ i, are fixed) in the objective function (13) are 
quasi-convex and Lipschitz continuous.

Proof. The quasi-convexity of �[G(S)] and �[G(Si)]
for global and local threshold policies follows from 
their unimodality shown in Lemmas 5 and 6, respec-
tively. The Lipschitz-continuity of these functions is 
straightforward, as the absolute value of the slope of 
�[G(S)] and �[G(Si)] cannot exceed the maximum of 
cost parameters p, ci, bj, sij, and di. w

Because �[G(S)] and �[G(Si)] in the objective (13) for 
global and local threshold, respectively, are quasi-convex 
and Lipschitz continuous in S, it follows that the corre-
sponding sample gradients (@G(S)=@S and @G(S)=@Si) 
are unbiased gradient estimates (Glasserman and Ho 
1991). Essentially, we have shown that

@
@Si

�DP,DO[G(S)] à �DP,DO
@
@Si

G(S)
� �

and

@
@S�DP,DO[G(S)] à �DP,DO

@
@S G(S)
� �

for local and global threshold policies, respectively. 
These technical conditions allow us to apply a theorem 
of Hazan et al. (2015) to prove that the fulfillment prob-
lem can be efficiently optimized as in Karp (2017). The 
theorem proves that the Stochastic Normalized Gradient 
Descent algorithm will find an ✏-optimal minimum solu-
tion with poly(1/✏) unbiased gradient estimates and 
optimization steps. We restate the theorem.
Theorem 4 (Hazan et al. 2015, theorem 5.1). An ✏-optimal 
minimum solution �[G(S)] (for global threshold) and �[G(Si)]
(for local threshold) can be obtained with poly(1/✏) unbiased gra-
dient estimates and optimization steps by a Stochastic Normal-
ized Gradient Descent algorithm.

We have so far established that the general single-stage 
omnichannel fulfillment problem can be solved efficiently 
using unbiased gradient estimates. In Section 5.5, we 
describe the Infinitesimal Perturbation Analysis (IPA) 
method to computationally solve our two-stochastic pro-
gramming problem and derive expressions for sample 
gradients.

5.5. IPA
IPA is a sample-path optimization technique that relies 
on sample gradients to estimate the gradient of the opti-
mization problem at hand.

5.5.1. IPA Algorithm. We describe the IPA algorithm for 
the global threshold class of policies. The procedure starts 
with an arbitrary value for the threshold S . A simulated 
instance of the online demand (DO

i ) for customer ship-
ping zone i and physical demand (DP

j ) at store j is gen-
erated. Using the realized demands, QP

j and AO
i are 

determined. The second-stage problem is solved in a 
deterministic fashion to compute the optimal solution 
using QP

j and AO
i as parameters. The gradient of the objec-

tive function (derivatives with respect to the threshold S) 
is estimated and accumulated over regenerative cycles; 
the average gradient value is then used to update the val-
ues of S. The procedure is summarized in a pseudo-code 
format, where N denotes the number of steps taken in a 
path search, U represents the number of regenerative 
cycles, γn represents the step size at iteration n, and S(n)

represents the threshold for nth iteration.

Algorithm 2. (IPA) 
1: Initialize N, U
2: Initialize S(1) possibly based on demand distribution
3: for n 2 {1, : : : , N} do
4: for u 2 {1, : : : , U} do
5: i. Generate an instance of the online and phys-

ical demands DO
i ∀i, DP

j ∀j.
6: ii. QP

j  min{Q �min{Q, DP
j }} ∀j

7: iii. Obtain AO
i from DO

i and S(n) ∀i.
8: iv. Solve the linear program (14) to obtain the 

optimal dual values of Constraints (15).
9: v. Obtain the (unbiased) gradient estimates 

δnu from optimal dual values.
10: Calculate the desired gradient(s), δn (1=U) ·PU

uà1 δnu
11: Update S(n+1) S(n) � γn · δn

Obtaining AO
i from DO

i .We now describe the proce-
dure to obtain sample derivatives from the optimal dual 
values of Constraints (7) after solving the linear program 
(14) for the three classes of order acceptance policies. 

• Local threshold:

AO
i  min{DO

i , S(n)
i }:

• Global threshold: Assuming Poisson distributions 
for online demands such that DO

i ~ Poisson(λi),

AO
i  

DO
i if

X

i2[I]
DO

i < S(n)

 

λi=
X

i2[I]
λi

!

· S(n) otherwise

8
>>><

>>>:

5.5.2. Sample Gradient Estimates. We derive the expres-
sions for sample derivative estimates.
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Lemma 8 (Sample gradient for Local Threshold Class). 
Let α⇤i (S) be the optimal dual variable corresponding to con-
straint i of the set of Constraints (15) of the linear program (6).

@
@Si

G(S) à (ci + α⇤i (S)) · 1(DO
i � Si)

Proof. Let us consider constraint i of the set of Con-
straints (15) of the linear program (14). We know from 
linear programming theory that ci + α⇤i (Si) at optimal-
ity represents the rate of change of objective function 
with respect to AO

i (Si).
If DO

i > Si, then AO
i (Si) à Si. On the other hand, if 

DO
i < Si, then AO

i (Si) àDO
i .

@
@Si

G(S)à @G(S)
@AO

i (Si)
·@AO

i (Si)
@Si

à (ci +α⇤i (S)) ·1(DO
i > Si) w 

Lemma 9 (Sample Gradient for Global Threshold Class). 
Let us consider Poisson distributions for online demands such 
that DO

i ~ Poisson(λi). Let α⇤i (S) be the optimal dual variable 
corresponding to constraint i of the set of Constraints (15) of 
the linear program (14).

@
@S G(S) à

X

i2[I]

λiP
i2[I]λi

 !

·
⌘

ci + α⇤i (S)
✓
· 1
 
X

i2[I]
DO

i � S
!

Proof. We know from linear programming theory 
that ci +α⇤i (S) represents the rate of change of G(S) 
with respect to AO

i (S).
The probability that the first rejected order is from 

customer shipping zone i is λi=(
P

i2[I]λi) (a property 
of the minimum of independent exponential random 
variables). If 

P
i2[I]DO

i < S, then AO
i (S) àDO

i . On the 
other hand, when 

P
i2[I]DO

i � S, then 
P

i2[I]AO
i (S) à S.

@
@SG(S)à

X

i2[I]
Pr[First rejected order from i]

· @G(S)
@AO

i (S) ·
@AO

i (S)
@S

à
X

i2[I]

λiP
i2[I]λi

 !

·
⌘

ci +α⇤i (S)
✓
·1
 
X

i2[I]
DO

i �S
!

w 

Theorem 5. From theorem 5.1 of Hazan et al. (2015), using
ci + α⇤i (S)
|ci + α⇤i (S)|

· 1(DO
i > Si) and

X

i2[I]

λiP
i2[I]λi

 !

· ci + α⇤i (S)
|ci + α⇤i (S)|

· 1
X

i2[I]
DO

i � S
 !

:

as the normalized gradients for the local and global threshold 
policies, respectively, our IPA-based algorithm, Algorithm 2, 

obtains an ✏-optimal threshold policy respectively with poly(1=✏) 
total samples of linear program (14).

6. Computational Experiments
We now turn to evaluate our policies on simulated 
instances. To this end, we use real-world data to charac-
terize all the parameters in our generative model. This is 
of interest not only from a purely descriptive perspective 
but also to create a reasonably realistic setting to test 
improvements of our methods over simple alternates 
that retailers have been traditionally using in practice.

6.1. Data Description
We perform this analysis by examining four retailers 
who are clients of the provider. The provider receives 
inventory feeds and online order feeds (unfortunately 
without zip codes), which we leverage here to do our 
experimental analysis and evaluation. The four retailers 
(named A–D) in our study are representative of high- 
end retail stores in the United States (see Table 2).

6.2. Extracting Parameters from Data and 
Sampling Orders

We use the data from all of the above retailers to demon-
strate the broad applicability of the problem and results. 
In particular, we use the data to study the characteristics 
of the following parameters of our fulfillment models: (i) 
distribution of number of stores for an SKU; (ii) distri-
bution of shipping costs; (iii) distribution of labor costs; 
(iv) inventory distribution and pick-failure probability. 
We use the sampled distributions to generate synthetic 
single-SKU orders with all the required cost parameters 
The details of the extraction of the parameters and sam-
pling orders are in Online Appendix B.

6.3. Value of Modeling Pick Failure
In our computational experiments, we demonstrate the 
value of modeling pick failure. For each of our models 
corresponding to Sections 2, 3, 4, and 5, we compare the 
performance of our optimal algorithms, which take into 
account pick failure at stores with the optimal algorithm 
that does not take pick failure into account (Figure 5). We 
conducted tests on 100 instances for each retailer to 
obtain these results.

1. Single order: static pick-failure probability (Section 2): 
We compare our optimal dynamic programming algo-
rithm to the greedy algorithm used in practice in which 

Table 2. Overview of Retail Data Used in This Analysis

ID Num SKUs Num stores Description

A 399,343 1,154 Multibillion department
B 503,875 830 Multibillion sports goods
C 104,945 204 Multibillion clothing
D 73,370 600 Specialty sports goods

Note. Num, number.
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the L stores with the lowest sum of labor and shipping 
costs (bj + sj) are chosen in order of total (Figure 5(a)). 
The greedy algorithm is optimal when we do not 
account for pick failure at stores. We set the maximum 
number of stages to explore to three before canceling 
with a delayed cancellation cost (d) of $25, which is 
higher than all shipping and labor costs used.

2. Single order: dynamic pick-failure probability (Section 
3): Similar to the single order with static pick-failure prob-
ability, we compare our optimal dynamic programming 
(Algorithm 1) to the same greedy algorithm, which does 
not account for pick failure at the stores (Figure 5(b)). We 
used the same setup of three stages and d à $25.

3. Multiorders (Section 4): In Figure 5(c), we computa-
tionally observe the costs and savings associated with 
modeling pick failure when the orders for the same 
item originating from different shipping zones are to 
be fulfilled in stores. Without accounting for pick fail-
ure, the optimal algorithm for the multiorder problem 
is to solve a deterministic transportation problem with 

(i) accepted orders from the shipping zones as the 
demands and (ii) inventory at the stores after physical 
demands are satisfied as supplies. The cost of fulfill-
ment of the policy returned by this transportation prob-
lem is then evaluated by calculating the expected 
fulfillment cost in the presence of pick failure using a 
simple one-step approximation (See Online Appendix 
B). Note that we use a single stage of fulfillment in this 
setup. The average expected costs in Figure 5(c) are the 
per order costs obtained by dividing the total costs by 
the number of orders.

4. Joint order acceptance & fulfillment (Section 4): We 
compare our IPA-based joint optimal order accep-
tance and fulfillment policy with the policy that is 
optimal for fulfillment in the absence of pick failure 
(as in Karp 2017) in Figure 5(d). We test our algorithm 
for the global thresholding class of policies. The aver-
age expected costs in Figure 5(d) are the per order 
costs obtained by dividing the total costs by the mean 
number of orders.

Figure 5. (Color online) Value of Modeling Pick Failure 

(a) (b)

(c) (d)

Notes. (a) Single-order fulfillment under static pick-failure probabilities (Section 2); (b) single-order fulfillment under dynamic pick-failure proba-
bilities (Section 3); (c) multiorder fulfillment (Section 4); (d) multiorder joint acceptance and fulfillment: global thresholding policy (Section 5). 
Average savings (a) A: 3.44%; B: 3.45%; C: 9.12%; D: 0.66%; (b) A: 4.61%; B: 3.5%; C: 11.81%; D: 0.55%; (c) A: 21.91%, B: 24.9%, C: 13.21%, 
D: 20.67%; (d) A: 1.61%, B: 4.01%, C: 14.35%, D: 1.96%.
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6.4. Value of Modeling Pick Failure in a 
Single-Store Joint Order Acceptance and 
Fulfillment Problem (Section 5.3)

In Figure 6, we demonstrate the value of modeling pick 
failure for the joint order acceptance and fulfillment prob-
lem in a stylized model with a single store (Section 5.3). In 
Figure 6, we highlight the variation of optimal fulfillment 
costs under various order acceptance thresholds. Whereas 
the upper line represents the total optimal fulfillment costs 
as a function of threshold, the lower line represents the 
fulfillment cost of the optimal fulfillment policy as a func-
tion of order acceptance threshold when pick failure is not 
modeled (as in Karp 2017). As can be seen in the figure, the 
optimal threshold with pick failure is eight. If pick failure 
is not considered (as in Karp 2017), the optimal threshold 
is nine. The savings is therefore the difference in optimal 
expected fulfillment cost (upper line) at thresholds eight 
and nine. Also observe that the optimal thresholds for both 
models are independent of the online demand.

We have conducted additional computational experi-
ments to investigate the sensitivity of savings to the other 
parameters of our models; the results are in Online 
Appendix C.

7. Conclusion and Future Work
In this paper, we incorporated picking costs in the prob-
lem of optimizing omnichannel fulfillment in SFS schemes 
under pick failure. We modeled this problem for single- 
SKU orders under various settings of physical and online 
demands being sparse or dense. We modeled the fulfill-
ment problem as a network flow with convex costs and 
used this in deriving effective policies for online order 
acceptance incorporating picking costs. Using data from 
North American retailers to design experiments, we dem-
onstrated that our algorithms achieved cost savings of up 
to 22% by incorporating pick failures. Our study demon-
strates that the modeling of the stochastic nature of pick 
failures along with their interaction with picking and ship-
ping costs is an important component in optimizing SFS 
fulfillment costs for large retailers.

There are several natural avenues for extending our 
work, such as extending the model of Section 4 to more 
than two stages of fulfillment and the extension of all our 
models to multi-item orders with synergies in fulfillment 
costs (such as shipping cost savings from consolidation). 
A more immediate extension of our models to the case 
when an additional dedicated fulfillment center for on-
line orders is added to the possibilities is also interesting 
and may highlight interesting trade-offs that are perti-
nent to the upstream problem of consolidating and plan-
ning new fulfillment centers.

Endnotes
1 Even without this assumption, the problem can be modelled as a 
two-stage stochastic program and solved using an IPA-based algo-
rithm as described in Section 5.4
2 S is (i) a scalar for global threshold policies and (ii) an I-sized vec-
tor for local threshold policies
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Appendix A: Proofs

A.1. Proof of Lemma 1

Proof. The proof relies on the observation that swapping adjacent stores when the earlier store has a

higher unreliability factor results in a lowering of the expected cost.

Assume for the sake of a contradiction that rm = r�⇤(l) > r�⇤(l+1) = rn.

rm > rn =) rm

1��n

� �n · rm
1��n

>
rn

1��m

� �m · rn
1��m

=) (1��m) · rm +�m · (1��n) · rn > (1��n) · rn +�n · (1��m) · rm (18)

Expanding the cost of the optimal policy, we get

V(�⇤) =

"
q�1X

l=1

 
l�1Y

l0=1

��⇤(l0)

!
· (1���⇤(l)) · r�⇤(l)

#

+

 
q�1Y

l=1

��⇤(l)

!
· (1��m) · rm +

 
qY

l=1

��⇤(l)

!
· (1��n) · rn (19)

+

"
LX

l=q+2

 
l�1Y

l0=1

��⇤(l0)

!
· (1���⇤(l)) · r�⇤(l)

#
+

" 
LY

l=1

��⇤(l)

!
· d
#

Examining the middle two terms corresponding to the l
th and (l+1)st stores we get

(19) =

 
q�1Y

l=1

��⇤(l)

!
·

(1��m) · rm +�m · (1��n) · rn

�

>

 
q�1Y

l=1

��⇤(l)

!
·

(1��n) · rn +�n · (1��m) · rm

�
using (18) (20)

Interchanging the trial positions of stores m and n would yield a policy with cost term (19) in V(�⇤) replaced

by (20). The cost of this policy is lower than V(�⇤), giving the desired contradiction. ⇤

A.2. Proof of Lemma 3

Table 3 Notations

QO

jk
: inventory level for the k

th online order to be tried at store j.
t
0
ij
(q) : expected trial cost at store j with inventory level q

t
0
ij
(q) = bj +(1��j(q)) · sij +�j(q) · di

Recall

tijk(QP

j
) =

QP

jX

q=QP

j
�(k�1)

Pr
⇥
QO

jk
= q

⇤
· t0

ij
(q)

1. We observe from the definition of tijk(QP

j
) that it is a convex combination of expected fulfillment costs

at di↵erent feasible inventory levels.
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2. The expected fulfillment cost at inventory level q, t0
ij
(q) is the sum of a constant bj and convex combination

of sij and di. Since sij < di and �j(q) is a non-increasing function (assumption 1), it follows that the

expected trial cost t0
ij
(q) is non-increasing in q.

3. Pr
⇥
QO

jk
= q

⇤
is the probability that the leftover inventory is q after the trial of k� 1 online orders. The

k�1 trials can be decomposed into two events (i) successful attempts of QP

j
� q online orders one each at

inventory level
�
q+1, . . . ,QP

j

 
and (ii) failed attempts of the remaining (k� 1)� (QP

j
� q) online orders

in the set of inventory levels
�
q, . . . ,QP

j

 
. The probability of event (ii) decreases with k because when

more items are independently tried at same pick failure probability levels, more items are likely to fail.

Pr
⇥
QO

jk
= q

⇤
=

0

@
QP

jY

q0=q+1

[1��j(q)]

1

A

| {z }
(i):independent of k

· Pr
⇥
(k� 1)� (QP

j
� q) failures

⇤
| {z }

(ii):non-increasing in k

(21)

Therefore, Pr
⇥
QO

jk
= q

⇤
is non-increasing in k.

4. We are now ready to compare tijk(QP

j
) and tij(k�1)(QP

j
).

tijk(QP

j
) =

Q
P

jX

q=QP

j
�(k�1)

Pr
⇥
QO

jk
= q

⇤
· t0

ij
(q)

=

Q
P

jX

q=QP

j
�(k�2)

Pr
⇥
QO

jk
= q

⇤
· t0

ij
(q) + Pr

⇥
QO

jk
=Q

P

j
� (k� 1)

⇤
· t0

ij
(QP

j
� (k� 1))

Step 2

�
Q

P

jX

q=QP

j
�(k�2)

0

BBB@
Pr

⇥
QO

jk
= q

⇤
+


Pr

⇥
QO

j(k�1) = q
⇤
�Pr

⇥
QO

jk
= q

⇤�

| {z }
�0 (Step 3)

1

CCCA
· t0

ij
(q)

+

0

@Pr
⇥
QO

jk
=Q

P

j
� (k� 1)

⇤
+

Q
P

jX

q=QP

j
�(k�2)

Pr
⇥
QO

jk
= q

⇤
1

A

| {z }
=1 (Step 1)

· t
0
ij
(QP

j
� (k� 1))

�

0

@
Q

P

jX

q=QP

j
�(k�2)

Pr
⇥
QO

j(k�1) = q
⇤
1

A

| {z }
=1 (Step 1)

· t
0
ij
(QP

j
� (k� 1))

=

Q
P

jX

q=QP

j
�(k�2)

Pr
⇥
QO

j(k�1) = q
⇤

· t
0
ij
(q)

= tij(k�1)(Q
P

j
)

⇤
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A.3. Proof of Lemma 4

We have the following objective function to be minimized.

G(S) =EDO,DP

2

64
min{DO

,S,QP}X

k=1

tk(QP )+ c ·
⇥
min

�
DO

, S
 
�min

�
DO

, S,QP
 ⇤
3

75

+EDO,DP

⇥
p ·min

�
DO �min

�
DO

, S
 
,QP �min

�
DO

, S,QP
  ⇤

Consider the derivative of the objective function. Recall that Q is the initial store inventory and QP =

max(0,Q�DP ).

G
0(S) =Pr

⇥
DO � S

⇤
Pr

⇥
DP Q�S

⇤
·EDP

⇥
tS(QP )

⇤

+ c ·Pr
⇥
DO � S

⇤
·
�
1�Pr

⇥
DP Q�S

⇤�

� p ·Pr
⇥
DO � S

⇤
·Pr

⇥
DP Q�S

⇤

=Pr
⇥
DO � S

⇤
·F (Q�S) ·EDP

⇥
tS(QP )

⇤

+ c ·Pr
⇥
DO � S

⇤
·
⇥
1�F (Q�S)

⇤
� p ·Pr

⇥
DO � S

⇤
·F (Q�S)

=Pr
⇥
DO � S

⇤
·
�
EDP

⇥
tS(QP )

⇤
� p� c

�
·F (Q�S)+ c

�

Here F is the cdf of DP . Note that the first derivative, G0(S) is independent of the distribution of online

orders.

Let us consider S⇤ such that G0(S⇤) = 0. Let �> 0.

G
0(S⇤ + �) =Pr

⇥
DO � S

⇤ + �
⇤
·
✓⇥

EDP

⇥
tS⇤+�(QP ))

⇤
� p� c

⇤
·F (Q�S

⇤ � �)+ c

◆

�Pr
⇥
DO � S

⇤ + �
⇤
·
✓⇥

EDP

⇥
tS⇤(QP ))

⇤
� p� c

⇤
·F (Q�S

⇤)+ c

◆
(22)

= 0 G(S⇤) = 0

G
0(S⇤ � �) =Pr

⇥
DO � S

⇤ � �
⇤
·
✓⇥

EDP

⇥
tS⇤��(QP )

⇤
� p� c

⇤
·F (Q�S

⇤ + �)+ c

◆

Pr
⇥
DO � S

⇤ � �
⇤
·
✓⇥

EDP

⇥
tS⇤(QP )

⇤
� p� c

⇤
·F (Q�S

⇤)+ c

◆
(23)

= 0 G(S⇤) = 0

(22) and (23) rely on F (·) being a cdf and tk being an increasing function in k (Lemma 3). Since, G0(S) is

decreasing when S <S
⇤ and increasing when S >S

⇤ , S⇤ is a global minimum. ⇤
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A.4. Proof of Corollary 1

Proof. Let S̃ =Q�F
�1
⇣

c

p+c

⌘
be the optimal threshold for the one store one zone problem without pick

failure, as shown in Karp (2017). Let us further assume that b = 0 and s = 0, so that we are in the same

setup as Karp (2017), though the corollary holds for any positive values of b and s.

G
0(S̃) =Pr

h
DO � S̃

i
·
✓⇥

E
⇥
t
S̃
(QP )

⇤
� p� c

⇤
·F (Q� S̃)+ c

◆

=Pr
h
DO � S̃

i
·
✓⇥

E
⇥
t
S̃
(QP )

⇤
� p� c

⇤
· c

p+ c
+ c

◆
definition of S̃

=Pr
h
DO � S̃

i
·
✓
E
⇥
t
S̃
(QP )

⇤
· c

p+ c

◆

> 0

Since, G0(S) is decreasing when S < S
⇤ and increasing when S > S

⇤, as shown in Lemma 4, it follows that

S
⇤
< S̃. ⇤

Note that our single store problem reduces to the single store problem in Karp (2017) if b (the picking

trial cost), s (the shipping cost) and �(q) (the pick failure probability) are set to 0.
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A.5. Proof of Theorem 5

Proof adapted from the proof of (Karp 2017, Theorem 2). We know from Theorem 3 that the linear pro-

gram (14) can be solved using a min-cost circulation network. We first state a lemma about the supermod-

ularity of objective value of min cost flow as a function of the supplies. Using this lemma, we proceed to

prove unimodality of the objective function.

Lemma 10 (Karp (2017), Lemma 2). In a minimum-cost single-commodity flow problem with multiple

sources, one sink, and integer supplies, demands, and capacities, the objective value of a minimum cost

feasible flow as a function of the supplies at the source nodes is supermodular.

Let S⇤ be an optimal solution. We will consider two cases of threshold S, (i) S < S
⇤ and (ii) S > S

⇤. For

each of the cases, let us consider realizations of demands DO

i
=D

O

i
and DP

j
=D

P

j
. Let the online demand

realizations DO

i
be such that

P
i2I

D
O

i
� S, because for other realizations, the objective value G(S) does not

change with respect to S. Therefore the total number of orders accepted
P

i2[I]A
O

i
(S) is S.

The min-cost flow problem has multiple sources with supplies. Let V (S) = [AO

1 (S), ...,A
O

I
(S)] be the

supplies at zones with realized demands D0
i
,D

P

j
at threshold S. We say V (S1)✓ V (S2) if AO

i
(S1)A

O

i
(S2)

for i2 [I].

Case 1: [S � S⇤] We observe that V (S⇤)✓ V (S⇤+1)✓ V (S)✓ V (S+1). Now by Lemma 10 (supermod-

ularity of G(S)), G(S+1)�G(S)�G(S⇤+1)�G(S⇤)). This implies that G(S+1)�G(S) is non-decreasing

for S > S
⇤

Case 2: [S < S⇤] We observe that V (S � 1) ✓ V (S) ✓ V (S⇤ � 1) ✓ V (S⇤). Now by the Lemma 10

(supermodularity of G(S)), G(S)�G(S � 1)  G(S⇤)�G(S⇤ � 1)). This implies that G(S + 1)�G(S) is

non-increasing for S <S
⇤

Since, G(S + 1)�G(S) is non-increasing when S < S
⇤ and non-decreasing when S > S

⇤ , S⇤ is a global

minimum. ⇤
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Appendix B: Extracting model parameters from data and sampling orders

We discuss in detail the process of extraction of the model parameters from the data provided by our partner

solutions provider. After the estimation of the distribution of model parameters from data, we describe the

sampling of an order using the estimated parameter distributions.

1. Distribution of number of stores for an SKU. We consider the distribution of store-counts of SKUs, i.e.,

the number of stores that carry each SKU and made available online for SFS. To do this, we examined

the inventory counts of the entire store network for every single SKU of the five retailers. For each SKU,

we counted the number of locations where it is available to be fulfilled from and aggregated these counts

in a log� log plot in Figure 7.

Figure 7 Log-log plot of the distribution of the number of stores in which a typical SKU is available for fulfillment

segregated by retailer
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The clear straight line plots between the log of percentage of SKUs and the log of number of stores

as shown in Figure 7 demonstrate a power law degree distribution for the store availability of SKUs .

Suppose �
k

r
is the percentage of SKUs having k stores for retailer r. The regression computed the best fit

for log�k

r
= �r + ⌘r logk.
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Table 4 Power law degree parameters for each

retailer

Retailer A B C D

� 10.486 11.832 10.195 9.641
⌘ -0.871 -1.268 -1.2 -1.134

The power law and the long-tail nature of the SKU availability in stores is a major motivation for our

work for two reasons: (i) An SKU can be present in multiple stores and therefore it is important to find

the right store to fulfill it in order. (ii) Very few copies of the SKU are likely to be present in each store;

hence there is considerable chance that we are unable to find the SKU in the store resulting in multiple

tries. To model and sample from the fitted distributions, we truncate the power law at 500 stores and

normalize to construct a synthetic distribution.

2. Distribution of Shipping Costs. USPS classifies the origin-destination distance into 8 zones, with zone

1 and zone 8 representing the shortest and longest distance respectively. Each zone has a shipping cost

given as a function of the weight of the SKU (in lbs.) shipped. We use a publicly available data set of all

the US zip codes along with their estimated population produced by the census (?), to come up with the

distribution of zones for a store, given a random customer location. It is typically the case that stores are

distributed close to population centers. Therefore, to simulate the customer-store zone distribution, we

randomly sample pairs of (origin, destination) zip codes (using census data) and then use the USPS zone

charts website (?) to determine the shipping zone for that pair of zip codes. The resulting distribution of

zones is shown in Figure 8.

Figure 8 Percentage of stores in di↵erent zones with respect to a typical customer
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Figure 8 represents the distribution of zones of stores from a customer location, generated at random

using census data. Assuming each SKU weighs 4lbs., the shipping cost (sj for store j) is determined from

the USPS Ground website (?) for a given zone in our simulations.

3. Distribution of Labor Costs. To sample labor costs, we use a representative retailer’s per-store volume

and per-store minimum wage. Figure 9 represents the distribution of store volume and store minimum

wage provided by the representative retailer.

Figure 9 Minimum hourly wage distribution for a representative retailer

Note. A dot in the plot represents a store, with its x-coordinate showing the percentage of total retailer’s volume

which that store handles, and the y-coordinate represents the minimum wage at that store location.

To sample a store’s labor cost, we sample a store from the list of stores for this retailer where the

probability of picking a store is proportional to the store’s sales volume. Once the store is picked we

estimate the labor cost from the minimum wage data of the store based on its location.

These labor cost estimates are upper bounds on real costs. Minimum wage is not representative of actual

handling costs due to sunk labor costs and the fact that typically 4-5 items can be processed within an

hour. We scale these costs down by 4 to be realistic but scaling them by any other reasonable value does

not impact the relative gains of our methods.

4. Inventory Distribution & Pick Failure Probability. By far the most important feature in predicting the

pick failure probability is the location of the store itself. We received data from the provider where each

row consists of an SKU that is ordered, the store that was attempted with its inventory of that SKU and

the pick success/failure information.
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We set the pick failure probability function at store j to be a simple step function of inventory so that

there is constant pick failure �j up to a certain level of inventory eQj and no pick failure beyond that. The

fulfillment costs can be illustrated as

tijk(Q
P

j
) =

8
>>><

>>>:

bj +(1��j) · sij +�j · di if k�
⇣
Q

P

j
� eQj

⌘+

bj + sij otherwise

Figure 10 shows the fit of the pick failure probabilities as a function of inventory levels at three stores.

Figure 10 One-step fit of pick failure probabilities at 3 stores as a function of the inventory

Sampling an order. We generate a random order for each retailer for the single-order fulfillment models

(Sections 2 and 3) using the following procedure. Note that pick failure probabilities, labor costs and shipping

costs at the store sampled for an SKU are all generated independently of each other.

1. Number of stores that carry an SKU (J). The number of stores that carry an SKU is sampled using a

power law distribution with parameter values taken from Table 4 for each retailer. For example, if J(B)

is the random variable for the number of stores that carry an SKU at retailer B, then Pr [J(B) = k]/

exp(11.832) · k�1.268 for k= 1, ...,500.

2. Pick failure probability at store j, (�j). For each retailer, we pick the top 5 SKUs that have the highest

volume of pick failure. For each of these 5 SKUs, we take the union of all stores that feature those SKUs.

For each store in this collection, we fit the best 1-step pick failure probability function.

To sample a store’s pick failure probability (for any SKU),

(a) We sample the store j itself from the list of selected stores in a way that the probability of picking

that store is proportional to that store’s sales volume.

(b) Sampling inventory
�
Q

j

�
. For each store, we sample the inventory of the store Q

j
from a multinomial

distribution modeling the inventory level.
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(c) Generating pick failure probability (�j ,�jl) For the static pick failure model (Section 2), the pick

failure probability �j is simply obtained by applying the one-step pick failure function to Q
j
. For the

dynamic pick failure model (Section 3), we set the physical demand at store j, DP

j
at each stage of

fulfillment, to be Poisson(0.6 ⇤Q
j
).

�jl =E
"
�j

 
Q

j
�

lX

l0=1

DP

j

!#

where �j(·) is the one step pick failure probability distribution function.

3. Labor cost at store j (bj). As described previously, we sample the store with a probability proportional

to its volume and assign all SKUs carried by that store a labor cost equal to the minimum wage at that

store location divided by a scaling factor of 4.

4. Shipping cost at store j (sj). For each store associated with the order, we sample its zone independently

from the distribution in Figure 8 and then assign the shipping cost from USPS website (?). We assume

each item weighs 4lbs.

5. Delayed cancellation cost (d). The delayed cancellation cost is set to $25 per order at any store.

For multi-order models (Sections 4 and 5), we fix the number of stores, J , to 10 and the number of customer

shipping zones, I, to 7. The initial inventory Q
j
at store j is sampled from the multinomial of inventory

levels at stores. The physical demand DP

j
for store j is Poisson(0.6 * Q

j
). The online demand from zone

i, DO

i
is Poisson(0.5 ⇤ zi ⇤

P
j
Q

j
), where zi is the proportion of orders from zone i calculated as shown in

Figure 8. The cancellation cost c and lost-sales cost p are set to $15 and $10 per order respectively
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Appendix C: Additional Computational Results

Sensitivity to delayed cancellation cost and the number of stages in single-order fulfillment model

under dynamic pick failure probabilities (Section 3). We examine the sensitivity of the cost savings

obtained from modeling pick failure to the parameters of our models. We study the variation of savings

obtained by our e�cient dynamic programming algorithm with respect to the baseline greedy algorithm which

is optimal when pick failure is not accounted for. We analyze the savings for our single-order fulfillment model

under dynamic pick failure probabilities (Section 3). Figure 11a shows that the average savings increases as

the delayed cancellation cost increases. This is because the greedy algorithm is oblivious to pick failure and

therefore does not account for the delayed cancellation cost. Figure 11b shows that the savings decrease as

the number of stages that an order is tried increases. In other words, the value of modelling pick failure in

high when the number of stages of fulfillment is low.

Figure 11 Sensitivity of savings to delayed cancellation cost (d) and number of stages (L)

(a) Average savings across delayed cancellation costs

(L = 3)

(b) Average savings across number of stages (d= $25)



Das et al.: Pick Faiure in Omnichannel SFS Programs

48Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

Sensitivity to physical demand in multi-order fulfillment model (Section 4). We vary the means of

the physical demands (E
⇥
DP

j

⇤
) as a percentage of available inventory at stores at the beginning of the day

(Q
j
).

Figure 12 Variation of savings with respect to physical demand as a fraction of inventory when d= $25 and L= 3

We observe in Figure 12 that the savings peak when the means of the physical demands are around 40%

of initial inventory at the stores. When the physical demand is low, the value of modeling pick failure drops

because of lower pick failures at higher inventory levels. On the other hand when the physical demand is

significant with respect to the inventory at stores, the optimal policy that takes into account pick failure

is relatively ine↵ective since the store demand depletes inventory much earlier and the delayed cancellation

cost becomes a dominant portion of the fulfillment costs.
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Comparison of expected numvber of trials of our policies. In addition to comparing costs of our

optimal policies with respect to the benchmark policies, we compare the expected number of trials for our

optimal policy against the benchmark policies for models in Sections 2 and 3 in Figure 13.

Figure 13 Improvement in average expected number of trials

(a) Single-order fulfillment under static pick failure prob-

abilities (Section 2)

(b) Single-order fulfillment under dynamic pick failure

probabilities (Section 3)

We use an example to explain the computation of expected number of trials for a policy. Let’s consider a 3-

stage problem with a fulfillment policy with stores, say store 1, store 2 and store 3 in order. Let (�1,�2,�3) =

(0.2,0.6,0.5). The expected number of trials for fulfillment policy [1,2,3] is 1 ⇤ (1� 0.2)+2 ⇤ 0.2 ⇤ (1� 0.6)+

3 ⇤ 0.2 ⇤ 0.6 ⇤ (1� 0.5).
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