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The arrival of publicly available genome-wide variation data is creating new oppor-
tunities for reconciling model-based methods for associating genotypes and pheno-
types with the complexities of real genome data. Such data is particularly valuable
for testing the utility of models of conserved haplotype structure to association
studies. While there is much interest in “haplotype block” models that assume
population-wide regions of low diversity, there is also evidence that such models
eliminate correlations potentially useful to association studies. We investigate the
value of relaxing the rigidity of block models by developing an association testing
method using the previously developed “haplotype motif” model, which retains the
notion of representing haploid sequences as concatenations of conserved haplotypes
but abandons the assumption of population-wide block boundaries. We compare
the effectiveness of motif, block, and single-variant models at finding association
with simulated phenotypes using real and simulated data. We conclude that the
benefits of haplotype models in any form are modest, but that haplotype models
in general and block-free models in particular are useful in picking up correlations
near the boundaries of the detectable level.

1. Introduction

Searches for correlations between human genetic variations and disease phe-
notypes have often been fruitful for strongly hereditary diseases, but have
had limited success at finding genetic risk factors for complex diseases. This
failure is likely due at least in part to the challenges of distinguishing many
relatively weak correlations from the noise produced by chance associations
with the millions of known sites of common variation. One approach to
address this problem involves identifying segments of correlated variations
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known as haplotypes. By finding these co-associating sets of variations,
one can in principle reduce the amount of data to be collected and ana-
lyzed in an association study and avoid some of the confounding effects of
testing many variant sites. The prospects of such methods may be greatly
facilitated by the recent construction of the HapMap®, a publicly available
collection of genome-wide single nucleotide polymorphism (SNP) variations
separated by donor to allow for haplotype inference.

Studies of simulation models?? and limited amounts of real datal
have suggested potentially large advantages to haplotype-based association
methods. Many such methods are based on the haplotype block model?,
which proposed that the genome consists of discrete regions of strongly cor-
related variations separated by recombination hotspots, across which corre-
lations have been eliminated by frequent historical recombination. Numer-
ous block construction criteria have since been proposed, generally based
13 or on linkage disequilib-
rium statistics®. A haplotype-based association test may be conducted by

either on haplotype diversity or similar metrics

directly testing for differences in frequencies of common haplotypes in in-
dividuals affected (cases) or unaffected (controls) by a disease®!. Or they
may use haplotypes to identify “haplotype tagging SNPs” (htSNPs), a sub-
set of SNPs that contain most of the information contained in the full SNP
set?, which can reduce the cost of genotyping and the difficulty of finding
meaningful associations in the resulting data.

While haplotype block models appear useful in facilitating association
studies by reducing data complexity, there is evidence that they do not
robustly capture true underlying haplotype conservation patterns'®. In
prior work, we developed the “haplotype motif” model'®, which explains
individual genomes as concatenations of conserved haplotypes (or isolated
variant sites). This model relaxes some of the rigidity of the block models,
while still maintaining enough structure to allow for robust fitting! and ef-
ficient application to various computational analyses'”. Figure 1 illustrates
the difference between block and motif models of haplotype structure on a
small hypothetical set of sequences. Other groups have since also developed
“haplotype motif” models using various optimization metrics'®1°.

Here, we focus on the ultimate test of such relaxed conserved haplotype
models: Does the extra information they preserve relative to block models
provide an advantage in association testing? We approach that question
with an empirical study of single-SNP, haplotype block, and haplotype
motif methods for finding associations between genotype and phenotype,
using simulated and HapMap data to understand how idealized models
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Figure 1. Illustration of possible block and motif partitions of a hypothetical set of
sequences, each corresponding to variable sites in a given region of one chromosome from
one individual. A: A block model, in which each chromosome is explained as a choice of
one haplotype in each of three blocks. B: A motif model, in which each chromosome is
explained as a concatenation of a set of “haplotype motifs” of varying length.

might mislead us with regard to real data. While we focus on the haplo-
type motif model, our interest is not specifically in that model per se, but
rather in whether exploiting correlation information across haplotype block
boundaries can lead to improvements in association study effectiveness.

2. Methods
2.1. Haplotype Structure and Tagging SNP Inference

Haplotype motif structure was inferred as described in Schwartz'® with
significance level 0.001 and maximum motif length 10. The method first
identifies candidate motifs by finding each subsequence whose population
frequency is significantly higher than would be predicted from the frequen-
cies of substrings from which it might be assembled. It then uses an iter-
ative algorithm to repeatedly explain the training sequences as maximum-
likelihood concatenations of individual motifs then use these explanations
to improve estimates of the motif frequencies. The reader is referred to
Schwartz!6 for algorithm details. Tag SNPs were determined from the mo-
tif structure by a dynamic programming algorithm'” to give an estimated
maximum prediction error of 5% for each hidden SNP site on the training
data. The maximum motif length was dictated by the prohibitive compu-
tational cost of htSNP selection using long motifs. The significance level is
a program default selected to provide high confidence that almost all motifs
represent truly conserved haplotypes.

We used two haplotype block methods, both implemented with the
dynamic programming algorithm of Zhang et al.?! One method we call
bounded blocks finds block partitions by minimizing the total number of
observed haplotypes over all blocks, subject to a maximum block length.
The results reported here used a maximum length of 5, although we found
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nearly identical results with maximum length 10 (data not shown). We
also used a simplified version of LD-based testing called four-gamete blocks,
which minimizes the number of blocks given that sequences in each block
must be consistent with a perfect phylogeny, or, equivalently, cannot have
all four possible gametes for any pair of SNP sites. While many block met-
rics have been proposed, we chose these two as representatives because they
tend to stress two different criteria that should make for a “good” model
for association testing: few blocks and thus few distinct association tests
(four gamete) or few haplotypes per block and thus less confounding from
unassociated haplotypes (bounded block). Minimal tag SNPs were selected
within each block by exhaustive enumeration.

2.2. Association Testing Methods

For each SNP in a data set, we counted occurrences of all motifs overlapping
that SNP for which the total population frequency of the motif exceeded
10%. All other motifs were grouped into a common “other” class. We then
performed a chi-square test of association on the contingency table of motif
classes and case/control status. As the motif method does not separate the
genome into putatively uncorrelated regions, we established p-values by a
permutation test. We randomly reassigned case and control labels while
preserving the size of each class and computed chi-square values as above,
recording the maximum statistic value for each degree of freedom. P-values
were estimated from one thousand permutations per data set.

With the two block methods, one class was developed for each of the
three most common haplotypes in each block. All other haplotypes were
assigned to a fourth class. A chi-square test of significance was applied to
the two-by-four table of the haplotype classes and case/control statuses. As
our concern in this study is whether correlations across block boundaries
are useful to association studies, we exclude such cross-boundary correla-
tion information by assuming no such correlations and using Bonferroni
correction for multiple hypothesis control.

Association tests were also performed on individual SNPs using a chi-
square test of the two-by-two contingency table of SNP allele and case-
control status. Control for multiple hypotheses was again performed by
Bonferroni correction assuming no correlations between SNPs. The same
protocol was used to test association with tag SNPs.

To assess the influence of cross-block correlations, we repeated all
Bonferroni-corrected tests with permutation tests using 1,000 permutations.
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2.3. Data Processing

We evaluated the methods using two real and three simulated data sets. We
downloaded phased data from a high-density 500 kb region of 7q21.13 from
the ENCODE resequencing project? and the full chromosome 22 HapMap
data set®. We believe the 7q21 data is a good approximation of the data to
be expected in a candidate gene study while the larger but sparser chromo-
some 22 data provides a better approximation to the challenges involved
in whole-genome studies. For each real data set, we removed all SNPs
that were not variant in all four HapMap population groups: CEPH (Utah
Residents with Northern and Western European ancestry); Han Chinese in
Beijing, China; Japanese in Tokyo, Japan; and Yoruba in Ibadan, Nigeria.
We were left with 548 such universal SNPs out of 1,523 total for the 7q21
data, an average marker distance of 912 bases, and 11,900 universal SNPs
out of 19,250 for chromosome 22, an average marker distance of 4.7 kb.
Simulated data was generated by coalescent simulation under a Wright-
Fisher neutral model using the ms program?”. We followed a protocol de-
veloped for a prior empirical study of the utility of block and motif models
for information compression'®. We used a mutation rate of 2.5 x 1078
per nucleotide per generation, a recombination rate of 10~® per pair of
sites per generation, and an effective population size of 10,000 based on
estimated values of the human mutation!! and recombination® rates and
effective population size'4. Each simulated data set consisted of 2,000 chro-
mosomes in a region of 100,000 segregating sites, representative of a 100 kb
genomic region. The resulting sequences were screened to remove any SNPs
with population frequency below 10%. Pairs of sequences were combined
at random assuming Hardy-Weinberg equilibrium to assign chromosomes
to individuals. A total of 220 simulated population samples were created.
Simulated disease phenotypes were artificially imposed on all data sets.
A disease SNP was assigned for each sample from among SNPs having
population frequency between 40% and 60%. The disease SNP was also re-
quired to be within a region between 45% and 55% of the distance along the
chromosome for real data or between 40% and 60% for simulated data. For
simplicity, an additive model with a single disease penetrance parameter, p,
was used to determine disease risk. Individuals homozygous for the disease
allele had probability p of having the disease, those homozygous for the non-
disease allele had probability 1 — p of the disease, and others were assumed
to have equal probability of having the disease or not. Individuals (pairs of
chromosomes) were assigned to case and control sets accordingly. For the
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real data, cases and controls were assigned independently for each of the
four population groups and any excess of cases over controls or vice-versa
was discarded for each before pooling the four ethnicities for association
testing. This protocol ensures an equal number of members of each group
in the cases and controls in order to better simulate the demographically
matched cases and controls to be expected in real association study data
sets. For each simulated sample, a single case and a single control set were
assigned and any excess of cases over controls or vice-versa was discarded.

For the 7q21 data, five case/control sets were constructed for each pen-
etrance value from 55% to 100% in increments of 5%. For the chromosome
22 data, five case/control sets were constructed for each penetrance value
from 60% to 100% in increments of 10%. One simulated data set was con-
structed by creating ten case/control sets for each penetrance from 55% to
100% in increments of 5% and a second by creating ten case/control sets
for each penetrance from 51% to 60% in increments of 1%. A final set was
developed for specificity testing using twenty sets of individuals assigned
randomly to cases and controls independent of genotype.

Each association method was applied to all data sets. Success was
evaluated by testing the fraction of associations detected at LOD cutoff
values of 3 (p-value 0.001), 2.5 (p-value 0.0032), 2 (p-value 0.01), and 1.5
(p-value 0.032). Sensitivity was tested on the randomly assigned cases and
controls at LOD cutoffs 3, 2.5, 2, 1.5, and 1 (p-value 0.1).

3. Results

We derived haplotype motif structures for all data sets and performed a
visual inspection of the motif patterns for the real data. Figure 2 depicts
the motif patterns assigned to the 7q21 region and a representative sub-
region of chromosome 22 selected for illustrative purposes. Both datasets
are overwhelmingly assigned to motifs of the maximum allowed length (10
SNPs), suggesting considerable conserved structure at both marker densi-
ties. Common motifs are nearly identical between the two Asian samples,
often shared between the Asian and European-ancestry samples, occasion-
ally shared between the Asian and Yoruba samples, and very rarely shared
by Yoruba and European but not Asian samples. These results provide an
informal check on the method as they are consistent with recent reconstruc-
tion of the likely human evolutionary tree?.

We began our quantitative analysis using the 7q21 data set. Figure 3
shows the results. All methods consistently fail for penetrance below 70%
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Figure 2. Visualization of haplotype motif assignments. Rows correspond to different
chromosomes and columns to different SNP sites. Contiguous bars of a single color
represent a single motif, with bars of the same color above and below them representing
copies of that motif in other individuals. Each image shows motifs for the four HapMap
populations (European-ancestry, Han Chinese, Japanese, and Yoruba) in order from top
to bottom, separated by solid black rows. A: Motif assignments for a representative
region of chromosome 22. B: Motif assignments for the 7q21 region.
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Figure 3. Power in identifying associations in 7q21 data. A: LOD cutoff 3; B: LOD
cutoff 2.5; C: LOD cutoff 2; D: LOD cutoff 1.5

and succeed for penetrance values of at least 90% for LOD 3 or 85% for
LOD 2.5 and below. The methods are therefore distinguishable only on a
relatively narrow set of penetrances. Within that range, the straightforward
motif method generally showed the least power. The single-SNP, 4-gamete
block, and motif-based htSNP methods were most successful, with the 4-
gamete block method outperforming the other two in one case.

We next examined the chromosome 22 data set. Preliminary visual in-
spection of the results confirms that the methods are finding significant
associations only in the region of the disease SNP. While space does not
permit us to present all of the detailed SNP-by-SNP scans, Fig. 4 shows a
representative set of images from a sample with 90% penetrance. At the
full-chromosome resolution, all methods show a single significant spike at
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Figure 4. Representative selection of association scans for chromosome 22 with a simu-
lated 90% penetrance disease SNP. Each line shows SNP-by-SNP LOD scores for the full
chromosome (left) and a one hundred SNP region (right) around the disease site (marked
by arrows). A: Motifs; B: Individual SNPs; C: Four-gamete blocks; D: Motif-selected
htSNPs. Values below zero after Bonferroni correction are truncated to zero. Motif LOD
scores above 3 (p-value 0.001) cannot be accurately estimated due to the use of a 1,000
trial permutation test and are therefore arbitrarily set to 3.3 (p-value 0.0005).

the location of the disease SNP (SNP position 5549). The motif method
shows many smaller distant spikes, while the other methods do not. This is
attributable to the fact that we assumed independence between tests for the
other methods when correcting for multiple hypotheses and the resulting
correction appears overly conservative. In the close-up view, all methods
show a region of significant association centered slightly to the left of the
disease SNP. The motif method shows significant associations across this
entire region, while the others all show isolated spikes of association sepa-
rated by regions of no association. This suggests that there are conserved
haplotypes associated with the disease SNP spanning the entire region that
are found by the motif method but often lost to the block methods.
Figure 5 shows the sensitivity of the methods on the chromosome 22
data. As with the 7q21 data, the methods behave identically for most
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Figure 5. Power in identifying associations in chromosome 22 data. A: LOD cutoff 3;
B: LOD cutoff 2.5; C: LOD cutoff 2; D: LOD cutoff 1.5

parameter values, successfully identifying association for all 90-100% pen-
etrance data sets and failing for all 60-70% penetrance data sets. At 80%
penetrance, the motif-based htSNP method is the most powerful, while the
standard motif method is the least powerful. Bounded blocks also perform
poorly, while all other methods perform equally well.

Although we examined here only one chromosome, we can extrapolate
our results to a full-genome scan. Chromosome 22 is approximately 56
Mb, or about 1.8% of the human genome, which allows us to estimate that
LOD scores detected by our methods would be approximately 1.8 lower if
corrected for analysis to the full data set. Thus, the LOD 3 cutoff results
would correspond to approximately a 94% confidence in a full genome scan.

We then analyzed the simulated data sets. We began by considering a
broad range of penetrance parameters, 55% to 100% in increments of 5%.
All methods are consistently successful for penetrance values of at least
75%. Occasional successes are observed even as low as 55%, suggesting that
the larger population size used in the simulated test allows even relatively
weak effects to be detected. The motif method appears most successful at
detecting the weakest effects (penetrance 55%) but is the least successful on
high-penetrance data sets. Overall, the motif-based ht SNP method appears
marginally the best at detecting associations in these data.

We then focused on the most difficult cases, examining simulated data
with penetrances for each integer value from 51% to 60%. Figure 7 shows
the results of these trials. No method was consistently dominant. The mo-
tif method appeared most successful on the hardest examples (penetrance
51%-55%). This success may be attributable to its better ability to find
some conserved haplotype correlating with the disease SNP if any exists
or it may be because its permutation test allows it to exploit correlations
across block boundaries, a capability not permitted for the other methods.
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Figure 6. Power for penetrances 55%-100% using coalescent simulated data. A: LOD
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Figure 7. Power for penetrances 51%-60% using coalescent simulated data. A: LOD
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Motif htSNPs become the most successful toward higher penetrance values.

Given indications that there is information useful to association tests
lost by the assumption of independent blocks, we further asked whether
dropping this assumption could recover some of that information. We there-
fore repeated all block and single-variant tests, replacing Bonferroni correc-
tion with permutation tests. Figure 8 shows power for chromosome 22 and
coalescent simulated data at LOD 3. Compared to the prior Bonferroni-
corrected graphs, the permutation tests yield a noticeable improvement in
the block methods and a slight improvement for the block htSNPs. The
motif htSNP method does not improve, suggesting that the assumption
of independence is more nearly true of motif-selected htSNPs than block-
selected htSNPs. Additional tests at other LOD values (data not shown)
confirm that permutation tests lead to improved sensitivity of block, block
htSNP, and single SNP tests, but not to motif htSNP tests.

We finally assessed the specificity of the methods using twenty samples
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Figure 8. Power for permutation-test variants of all methods. A: chromosome 22 with
LOD cutoff 3; B: simulated data with LOD cutoff 3.
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Figure 9. False positive identifications on twenty trials of randomly assorted simulated
cases and controls as a function of LOD cutoff.

of randomly assorted simulated cases and controls. Figure 9 shows false
positive rates as functions of the LOD cutoff. All values are within what can
reasonably be expected by chance for each LOD score. All but motif htSNPs
produce at least one false positive on 20 trials at LOD 1, while no methods
produce any false positive values at LOD 2 or higher. Half of the methods
using Bonferroni correction achieved exactly the expected number of errors
at LOD 1 (2 errors); this appears to undermine our prior indication from
chromosome 22 data that the Bonferroni correction is overconservative,
suggesting that it is not excessively so.

4. Discussion

This study was intended to determine whether relaxing rigid block bound-
aries in models of haplotype structure would improve their utility for asso-
ciation tests. Our results provide an ambiguous answer to that question.
Only a narrow range of parameter values discriminates between the meth-
ods for any data set, suggesting that the benefits of any one method over
any other are relatively modest. The motif-based htSNP test appears to be
marginally the best overall for both real and simulated data, consistent with
prior work showing that motifs provide a clear advantage over comparable
block methods at robustly selecting small htSNP sets'”. The pure motif
method does generally poorly, which we conjecture occurs because it tends
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to produce too many motifs covering each site, confounding the chi-square
statistic. This could be an inherent problem of the motif approach or might
be resolved by a different motif inference method or test statistic. Motifs
do, however, appear to be the best for detecting the weakest correlations.

Both motif-based methods work comparatively better on simulated than
on real data, suggesting that block-like patterns are more pronounced in
real than in simulated data, even if they do not fully describe either. This
conclusion is consistent with an emerging consensus in the field that in-
ferred block patterns do not entirely reflect an inherent “blockiness” due
to recombination hotspots, as was first proposed?, but neither are they are
fully explicable from uniform recombination rate models of human popu-
lation history'2. The conclusion is further supported by the improvement
exhibited in block tests when using a permutation test rather than Bon-
ferroni correction. The assumption of the block model that correlation
information is captured within blocks is only partially valid, and methods
for recovering that information either at the stage of model construction or
application of the association test can lead to improved power. Both motif
methods work better on the chromosome 22 data than on the denser 7q21
data, possibly because computational resource constraints limit us to short
motifs (maximum of 10 SNPs in these tests), preventing them from taking
advantage of long-range correlations in a dense marker set.

None of the methods considered — SNP, block, or motif — consistently
dominates the others in all conditions; each can be expected to find some
associations that would be missed by others. It would be self-defeating
in practice to apply many methods to every data set, as the correction for
multiple hypotheses would likely eliminate the small advantages of different
methods for different cases. However, using a small number of very different
methods may have advantages over applying only one “best” method. If we
were to recommend one method from among those we examined, it would
be an htSNP method. But if we were to recommend two, the second would
be the motif method, as it is most likely to find associations the first misses.
The field of association testing may benefit most by seeking a diversity of
approaches, with particular emphasis on finding a few niche methods, like
motifs, that are strongest in cases where others methods are weakest.
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