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Abstract

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character

states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in

the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient

but not robust to imperfections in real data. A near-perfectphylogeny relaxes the perfect phylogeny

assumption by allowing at most a constant number of additional mutations. We develop two algorithms

for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance.

The first simple algorithm is fixed parameter tractable when the number of additional mutations and

the number of characters that share four gametes with some other character are constants. The sec-

ond, more involved algorithm for the problem is fixed parameter tractable when only the number of

additional mutations is fixed. We have implemented both algorithms and shown them to be extremely

efficient in practice on biologically significant data sets.This work proves the BNPP problem fixed

parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find

guaranteed optimal solutions while being easily implemented and computationally feasible for data sets

of biologically meaningful size and complexity.

Index Terms

computations on discrete structures, trees, biology and genetics

I. INTRODUCTION

Reconstruction of evolutionary trees is a classical computational biology problem [15], [24].

In the maximum parsimony (MP) model of this problem one seeksthe smallest tree to explain a

set of observed organisms. Parsimony is a particularly appropriate metric for trees representing

short time scales, which makes it a good choice for inferringevolutionary relationships among

individuals within a single species or a few closely relatedspecies. The intraspecific phylogeny

problem has become especially important in studies of humangenetics now that large-scale

genotyping and the availability of complete human genome sequences have made it possible to

identify millions of single nucleotide polymorphisms (SNPs) [26], sites at which a single DNA

base takes on two common variants.

Minimizing the length of a phylogeny is the problem of findingthe most parsimonious tree,

a well known NP-complete problem [12]. Researchers have thus focused on either sophisticated

heuristics or solving optimally for special cases (e.g. fixed parameter variants [1], [8], [20]).
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Previous attempts at such solutions for the general parsimony problem have only produced

theoretical results, yielding algorithms too complicatedfor practical implementation. A large

number of related works have been published, but it is impossible to mention all of them here.

In this work, we focus on the the case when the set of characterstates is binary. In this

setting, the input is often represented as ann×m matrix I. Then rows of the matrix (taxa) can

be viewed as points on anm-cube. Therefore, the problem is equivalent to finding the Steiner

minimum tree in a hypercube. In the binary state case, a phylogeny is calledperfectif its length

equalsm. Gusfield showed that such phylogenies can be reconstructedin linear time [14].

If there exists no perfect phylogeny for inputI, then one option is to slightly modifyI so

that a perfect phylogeny can be constructed for the resulting input. Upper bounds and negative

results have been established for such problems. For instance, Day and Sankoff [7], showed

that finding the maximum subset of characters containing a perfect phylogeny is NP-complete

while Damaschke [8] showed fixed parameter tractability forthe same problem. The problem

of reconstructing the most parsimonious tree without modifying the inputI seems significantly

harder.

Fernandez-Baca and Lagergren recently considered the problem of reconstructing optimal near-

perfect phylogenies [11], which assume that the size of the optimal phylogeny is at mostq larger

than that of a perfect phylogeny for the same input size. Theydeveloped an algorithm to find

the most parsimonious tree in timenmO(q)2O(q2s2), wheres is the number of states per character,

n is the number of taxa andm is the number of characters. This bound may be impractical for

sizes ofm to be expected from SNP data, even for moderateq. Given the importance of SNP

data, it would therefore be valuable to develop methods ableto handle largem for the special

case ofs = 2, a problem we call Binary Near Perfect Phylogenetic tree reconstruction (BNPP).

A. Our Work

Algorithm 1: We first present theoretical and practical results on the optimal solution of the

BNPP problem. We completely describe and analyze an intuitive algorithm for the BNPP problem

that has running timeO((72κ)qnm+nm2), whereκ is the number of characters that violate the

four gametecondition, a test of perfectness of a data set explained below. Sinceκ ≤ m, this result

significantly improves the prior running time. Furthermore, the complexity of the previous work

would make practical implementation daunting; to our knowledge no implementation of it has
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ever been attempted. Our results thus describe the first practical phylogenetic tree reconstruction

algorithm that finds guaranteed optimal solutions while being computationally feasible for data

sets of biologically relevant complexity. A preliminary paper on this algorithm appeared as

Sridhar et al. [23].

Algorithm 2: We then present a more involved algorithm that runs in timeO(21q + 8qnm2).

Fernandez-Baca and Lagergren [11] in concluding remarks state that the most important open

problem in the area is to develop a parameterized algorithm or prove W [t] hardness for the

near-perfect phylogeny problem. We make progress on this open problem by showing for the

first time that BNPP is fixed parameter tractable (FPT). To achieve this, we use a divide and

conquer algorithm. Each divide step involves performing a ‘guess’ (or enumeration) with cost

exponential inq. Finding the Steiner minimum tree on aq-cube dominates the run-time when

the algorithm bottoms out. The present work substantially improves on the time bounds derived

for a preliminary version of this algorithm, which was first presented in Blelloch et al. [2].

We further implement variants of both algorithms and demonstrate them on a selection of

real mitochondrial, Y-chromosome and bacterial data sets.The results demonstrate that both

algorithms substantially outperform their worst-case time-bounds, yielding optimal trees with

high efficiency on real data sets typical of those for which such algorithms would be used in

practice.

II. PRELIMINARIES

In defining formal models for parsimony-based phylogeny construction, we borrow definitions

and notations from a couple of previous works [11], [24]. Theinput to a phylogeny problem is an

n×m binary matrixI where rowsR(I) representinput taxaand are binary strings. The column

numbersC = {1, · · · , m} are referred to ascharacters. In a phylogenetic tree, or phylogeny,

each vertexv corresponds to a taxon (not necessarily in the input) and hasan associated label

l(v) ∈ {0, 1}m.

The following are equivalent definitions of a phylogeny, both of which have been used in

prior literature:

Definition 1: A phylogenyT for matrix I is:

1) a treeT (V, E) with the following propertiesR(I) ⊆ l(V (T )) and for all (u, v) ∈ E(T ),

H(l(u), l(v)) = 1 whereH is the Hamming distance.
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2) a treeT (V, E) with the following properties:R(I) ⊆ l(V (T )) andl({v ∈ V (T )|degree(v) ≤

2}) ⊆ R(I). That is, every input taxon appears inT and every leaf or degree-2 vertex is

an input taxon.

The following two definitions provide some useful terminology when discussing either defi-

nition of a phylogeny:

Definition 2: A vertex v of phylogenyT is terminal if l(v) ∈ R(I) andSteinerotherwise.

Definition 3: For a phylogenyT , length(T ) =
∑

(u,v)∈E(T ) d(l(u), l(v)), where d is the

Hamming distance.

A phylogeny is called an optimum phylogeny if its length is minimized. We will assume that

both states0, 1 are present in all characters. Therefore the length of an optimum phylogeny is

at leastm. This leads to the following two definitions:

Definition 4: For a phylogenyT on inputI, penalty(T ) = length(T )−m; penalty(I) =

penalty(T opt), whereT opt is any optimum phylogeny onI.

Definition 5: A phylogeny T is called q-near-perfectif penalty(T ) = q and perfect if

penalty(T ) = 0.

Note that in an optimum phylogeny, no two vertices share the same label. Therefore, we can

equivalently define an edge of a phylogeny as(t1, t2) whereti ∈ {0, 1}m. Since we will always

be dealing with optimum phylogenies, we will drop the label function l(v) and usev to refer to

both a vertex and the taxon it represents in a phylogeny.

With the above definitions, we are now prepared to define our central computational problem:

The BNPP problem: Given an integerq and ann×m binary input matrixI, if penalty(I) ≤ q,

then return an optimum phylogenyT , else declareNIL. The problem is equivalent to finding the

minimum Steiner tree on anm-cube if the optimum tree is at mostq larger than the number of

dimensionsm or declaringNIL otherwise. The problem is fundamental and therefore expected

to have diverse applications besides phylogenies.

Definition 6: We define the followingnotations:

• r[i] ∈ {0, 1}: the state in characteri of taxonr

• µ(e) : E(T ) → 2C : the set of all characters corresponding to edgee = (u, v) with the

property for anyi ∈ µ(e), u[i] 6= v[i]. Note that for the first definition of a phylogeny

µ(e) : E(T ) → C.
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• for a set of taxaM , we useT ∗
M to denote an optimum phylogeny onM

We say that an edgee mutatescharacteri if i ∈ µ(e). We will use the following well known

definition and lemma on phylogenies.

Definition 7: Given matrixI, the set of gametesGi,j for charactersi, j is defined as:Gi,j =

{(r[i], r[j])|r ∈ R(I)}. Two charactersi, j sharet gametes inI i.f.f. |Gi,j| = t.

In other words, the set of gametesGi,j is a projection on thei, j dimensions.

Lemma 2.1: [14] An optimum phylogeny for inputI is not perfect i.f.f. there exists two

charactersi, j that share (all) four gametes inI.

Definition 8: (Conflict Graph [17]) : A conflict graphG for matrix I with character setC

is defined as follows. Every vertexv of G corresponds to unique characterc(v) ∈ C. An edge

(u, v) is added toG i.f.f. c(u), c(v) share all four gametes inI. Such a pair of characters are

defined to be inconflict.

Note that if the conflict graphG contains no edges, then a perfect phylogeny can be constructed

for I. Gusfield [14] provided an efficient algorithm to reconstruct a perfect phylogeny in such

cases.

Simplifications: We assume that the all zeros taxon is present in the input. If not, using our

freedom of labeling, we convert the data into an equivalent input containing the all zeros taxon

(see section 2.2 of Eskin et al [9] for details). We also remove any character that contains only

one state. Such characters do not mutate in the whole phylogeny and are therefore useless in

any phylogeny reconstruction. The BNPP problem asks for thereconstruction of an unrooted

tree. For the sake of analysis, we will however assume that all the phylogenies are rooted at the

all zeros taxon.

III. SIMPLE ALGORITHM

This section describes a simple algorithm for the reconstruction of a binary near-perfect

phylogenetic tree. Throughout this section, we will use thefirst definition of a phylogeny

(Definition 1).

We begin by performing the following pre-processing step. For every pair of charactersc′, c′′

if |Gc′,c′′| = 2, we (arbitrarily) remove characterc′′. After repeatedly performing the above step,

we have the following lemma:

Lemma 3.1:For every pair of charactersc′, c′′, |Gc′,c′′| ≥ 3.
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(a)

(b)

Fig. 1. (a) PhylogenyT and skeletons(T, C′), C′ = {3, 4}. Edges are labeled with characters that mutateµ and super nodes

with tagst. (b) Transform to remove a degree 2 Steiner root from a super node. Note: the size of the phylogeny is unchanged.

We will assume that the above lemma holds on the input matrix for the rest of the paper.

Note that such charactersc′, c′′ are identical (after possibly relabeling one character) and are

usually referred to as non-informative. It is not hard to show that this preprocessing step does

not change the correctness or running time of our algorithm.

The following additional defintions are required for the description and analysis of the simple

algorithm:

Definition 9: For any phylogenyT and set of charactersC ′ ⊆ C:

• a super nodeis a maximal connected subtreeT ′ of T s.t. for all edgese ∈ T ′, µ(e) /∈ C ′

• the skeletonof T , s(T, C ′), is the tree that results when all super nodes are contractedto

a vertex. The vertex set ofs(T, C ′) is the set of super nodes. For all edgese ∈ s(T, C ′),

µ(e) ∈ C ′.

Definition 10: A tag t(u) ∈ {0, 1}m of super nodeu in s(T, C ′) has the property thatt(u)[c′] =

v[c′] for all c′ ∈ C ′, verticesv ∈ u; t[u][i] = 0 for all i /∈ C ′.

Throughout this paper, we will assume without loss of generality that we are working with

phylogenies and skeletons that are rooted at the all zeros taxon and tag respectively. Furthermore,

the skeletons used in this work themselves form a perfect phylogeny in the sense that no character

mutates more than once in the skeleton. Note that in such skeletons, tagt(u)[i] = 1 if and only

if characteri mutates exactly once in the path from the root tou. Figure 1(a) shows an example

of a skeleton of a phylogeny. We will use the termsub-phylogenyto refer to a subtree of a

phylogeny.
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function buildNPP ( binary matrix I, integer q )

1) let G(V, E) be the conflict graph ofI

2) let Vnis ⊆ V be the set of non-isolated vertices

3) for all M ∈ 2c(Vnis), |M | ≤ q

a) construct rooted perfect phylogenyPP(VPP , EPP ) on

charactersC \ M

b) defineλ : R 7→ VPP s.t.λ(r) = u i.f.f. for all i ∈ C\M ,

r[i] = t(u)[i]

c) Tf := linkTrees (PP)

d) if penalty(Tf ) ≤ q then returnTf

4) returnNIL

Fig. 2. Pseudo-code to find the skeleton.

Throughout the analysis, we fix an optimal phylogenyT ∗ and show that our algorithm finds

it. We assume that bothTopt and its skeleton is rooted at the all zeros label and tag respectively.

The high level idea of our algorithm is to first guess the characters that mutate more than once

in Topt. The algorithm then finds a perfect phylogeny on the remaining characters. Finally, it

adds back the imperfect components by solving a Steiner treeproblem. The algorithm is divided

into two functions,buildNPP andlinkTrees, whose pseudo-code is provided in Figures 2

and 3.

FunctionbuildNPP starts by determining the set of charactersc(Vnis) that corresponds to

the non-isolated vertices of the conflict graph in Step 2. From set c(Vnis), the algorithm then

selects by brute-force the set of charactersM that mutate more than once inTopt. Only characters

corresponding to non-isolated vertices can mutate more than once in any optimal phylogeny (a

simple proof follows from Buneman graphs [24]). Since all characters ofC \M mutate exactly

once, the algorithm constructs a perfect phylogeny on this character set using Gusfield’s linear

time algorithm [14]. The perfect phylogeny is unique because of Lemma 3.1. Note thatPP is

the skeletons(Topt, C \ M). Since the tags of the skeleton are unique, the algorithm cannow

determine the super node where every taxon resides as definedby functionλ in Step 3b. This

rooted skeletonPP is then passed into functionlinkTrees to complete the phylogeny.
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function linkTrees ( skeleton Sk(Vs, Es) )

1) let S := root(Sk)

2) let RS := {s ∈ R|λ(s) = S}

3) for all childrenSi of S

a) let Ski be subtree ofSk rooted atSi

b) (ri, ci) := linkTrees(Ski)

4) let cost :=
∑

i ci

5) for all i, let li := µ(S, ci)

6) for all i, definepi ∈ {0, 1}m s.t. pi[li] 6= ri[li] and for all

j 6= li, pi[j] = ri[j]

7) let τ := RS ∪ (∪i{pi})

8) let D ⊆ C be the set of characters where taxa inτ differ

9) guess root taxon ofS, rS ∈ {0, 1}m s.t. ∀i ∈ C \ D, ∀u ∈

τ, rS[i] = u[i]

10) let cS be the size of the optimal Steiner tree ofτ ∪ {rS}

11) return(rS, cost + cS)

Fig. 3. Pseudo-code to construct and link imperfect phylogenies

FunctionlinkTrees takes a rooted skeletonSk (sub-skeleton ofPP ) as argument and

returns a tuple(r, c). The goal of functionlinkTrees is to convert skeletonSk into a

phylogeny for the taxa that reside inSk by adding edges that mutateM . Notice that using

function λ, we know the set of taxa that reside in skeletonSk. The phylogeny forSk is built

bottom-up by first solving the phylogenies on the sub-skeleton rooted at children super nodes of

Sk. Tuple(r, c) returned by function call tolinkTrees(Sk) represents the costc of the optimal

phylogeny when the label of the root vertex in the root super node ofSk is r. Let S = root(Sk)

represent the root super node of skeletonSk. RS is the set of input taxa that map to super node

S under functionλ. Let its children super nodes beS1, S2, . . .. Assume that recursive calls to

linkTrees(Si) return (ri, ci). Notice that the parents of the set of rootsri all reside in super

nodeS. The parents ofri are denoted bypi and are identical tori except in the character that

mutates in the edge connectingSi to S. Setτ is the union ofpi andRS, and forms the set of
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vertices inferred to be inS. SetD is the set of characters on which the labels ofτ differ i.e.

for all i ∈ D, ∃r1, r2 ∈ τ, r1[i] 6= r2[i]. In Step 9, we guess the rootrS of super nodeS. This

guess is ‘correct’ if it is identical to the label of the root vertex ofS in Topt. Notice that we are

only guessing|D| bits of rS. Corollary 3.3 of Lemma 3.2 along with optimality requires that

the label of the root vertex ofTopt is identical toτ in all the charactersC \ D:

Lemma 3.2:There exists an optimal phylogenyTopt that does not contain any degree 2 Steiner

roots in any super node.

Proof: Figure 1(b) shows how to transform a phylogeny that violatesthe property into one

that doesn’t. Root10 is degree 2 Steiner and is moved into parent supernode as01. Since10

was Steiner, the transformed tree contains all input.

Corollary 3.3: In Topt, the LCA of the setτ is the root of super nodeS.

In step 10, the algorithm finds the cost of the optimum Steinertree for the terminal set of

taxa τ ∪ {rS}. We use Dreyfus-Wagner recursion [22] to compute this minimum Steiner tree.

The function now returnsrS along with the cost of the phylogeny rooted inS which is obtained

by adding the cost of the optimum Steiner tree inS to the cost of the phylogenies rooted atci.

The following Lemma bounds the running time of our algorithmand completes the analysis:

Lemma 3.4:The algorithm described above runs in timeO((18κ)qnm+nm2) and solves the

BNPP problem with probability at least2−2q. The algorithm can be easily derandomized to run

in time O((72κ)qnm + nm2).

Proof: The probability of a correct guess at Step 9 in functionlinkTrees is exactly2−|D|.

Notice that the Steiner tree in super nodeS has at least|D| edges. Sincepenalty(Topt) ≤ q,

we know that there are at most2q edges that can be added in all of the recursive calls to

linkTrees. Therefore, the probability that all guesses at Step 9 are correct is at least2−2q. The

time to construct the optimum Steiner tree in step 10 isO(3|τ |2|D|). Assuming that all guesses are

correct, the total time spent in Step 10 over all recursive calls is O(32q2q). Therefore, the overall

running time of the randomized algorithm isO((18κ)qnm+nm2). To implement the randomized

algorithm, since we do not know if the guesses are correct, wecan simply run the algorithm

for the above time, and if we do not have a solution, then we restart. Although presented as

a randomized algorithm for ease of exposition, it is not hardto see that the algorithm can be

derandomized by exploring all possible roots at Step 9. The derandomized algorithm has total

running timeO((72κ)qnm + nm2).
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IV. FIXED PARAMETER TRACTABLE ALGORITHM

This section deals with the complete description and analysis of our fixed parameter tractable

algorithm for the BNPP problem. Throughout this section we will use the second definition of

a phylogeny (Definition 1). For ease of exposition, we first describe a randomized algorithm for

the BNPP problem that runs in timeO(18q + qnm2) and returns an optimum phylogeny with

probability at least8−q. We later show how to derandomize it. In sub-section IV-A, wefirst

provide the complete pseudo-code and describe it. In sub-section IV-B, we prove the correctness

of the algorithm. In sub-section IV-C, we upper-bound the running time for the randomized and

derandomized algorithms and the probability that the randomized algorithm returns an optimum

phylogeny. The above work follows that presented in a preliminary paper on the topic [2]. Finally,

in sub-section IV-D, we show how to tighten the above bounds on the derandomized algorithm

to achieve our final result ofO(21q + 8qnm2) run time.

A. Description

We begin with a high-level description of our randomized algorithm. The algorithm iteratively

finds a set of edgesE that decomposes an optimum phylogenyT ∗
I into at mostq components.

An optimum phylogeny for each component is then constructedusing a simple method and

returned along with edgesE as an optimum phylogeny forI.

We can alternatively think of the algorithm as a recursive, divide and conquer procedure. Each

recursive call to the algorithm attempts to reconstruct an optimum phylogeny for an input matrix

M . The algorithm identifies a characterc s.t. there exists an optimum phylogenyT ∗
M in which

c mutates exactly once. Therefore, there is exactly one edgee ∈ T ∗
M for which c ∈ µ(e). The

algorithm, then guesses the vertices that are adjacent toe as r, p. The matrixM can now be

partitioned into matricesM0 and M1 based on the state at characterc. Clearly all the taxa in

M1 reside on one side ofe and all the taxa inM0 reside on the other side. The algorithm

addsr to M1, p to M0 and recursively computes the optimum phylogeny forM0 andM1. An

optimum phylogeny forM can be reconstructed as the union ofanyoptimum phylogeny forM0

and M1 along with the edge(r, p). We require at mostq recursive calls. When the recursion

bottoms out, we use a simple method to solve for the optimum phylogeny.

We describe and analyze the iterative method which flattens the above recursion to simplify

the analysis. For the sake of simplicity, we also define the following notations:
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buildNPP(input matrix I)

1) let L := {I}, E := ∅

2) while | ∪Mi∈L N(Mi)| > q

a) guess vertex v from ∪Mi∈LN(Mi), let

v ∈ N(Mj)

b) let M0 := Mj(c(v), 0) and M1 := Mj(c(v), 1)

c) guess taxa r and p

d) add r to M1, p to M0 and (r, p) to E

e) remove Mj from L, add M0 and M1 to L

3) for each Mi ∈ L compute an optimum phylogeny

Ti

4) return E ∪ (∪iTi)

Fig. 4. Pseudo-code to solve the BNPP problem. For allMi ∈ L, N(Mi) is the set of non-isolated vertices in the conflict

graph ofMi. Guess at Step 2a is correct i.f.f. there existsT ∗

Mj
wherec(v) mutates exactly once. Guess at Step 2c is correct

i.f.f. there existsT ∗

Mj
wherec(v) mutates exactly once and edge(r, p) ∈ T ∗

Mj
with r[c(v)] = 1, p[c(v)] = 0. Implementation

details for Steps 2a, 2c and 3 are provided in Section IV-C.

• For the set of taxaM , M(i, s) refers to the subset of taxa that contains states at character

i.

• For a phylogenyT and characteri that mutates exactly once inT , T (i, s) refers to the

maximal subtree ofT that contains states on characteri.

The pseudo-code for the above described algorithm is provided in Figure 4. The algorithm

performs ‘guesses’ at Steps 2a and 2c. If all the guesses performed by the algorithm are ‘correct’

then it returns an optimum phylogeny. The guess at Step 2a is correct if and only if there exists

T ∗
Mj

where c(v) mutates exactly once. The guess at Step 2c is correct if and only if there

existsT ∗
Mj

wherec(v) mutates exactly once and edge(r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] =

0. Implementation details for Steps 2a, 2c and 3 are provided in Section IV-C. An example

illustrating the reconstruction is provided in Figure 5.
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Fig. 5. Example illustrating the reconstruction. Underlying phylogeny isT ∗

I ; taxar andp (both could be Steiner) are guessed

to createE = {(10000, 10100), (01000, 01010)}; E induces three components inT ∗

I . When all taxa inT ∗

I are considered,

character3 conflicts with1, 2 and 5 and character4 conflicts with 1 and 2; two components are perfect (penalty 0) and one

has penalty 2;penalty(I) =def penalty(T ∗

I ) = 7.

B. Correctness

We will now prove the correctness of the pseudo-code under the assumption that all the guesses

performed by our algorithm are correct. Specifically, we will show that ifpenalty(I) ≤ q then

functionbuildNPP returns an optimum phylogeny. The following lemma proves the correctness

of our algorithm.

Lemma 4.1:At any point in execution of the algorithm, an optimum phylogeny for I can be

constructed asE ∪ (∪iTi), whereTi is any optimum phylogeny forMi ∈ L.

Proof: We prove the lemma using induction. The lemma is clearly trueat the beginning of

the routine whenL = {I}, E = ∅. As inductive hypothesis, assume that the above property istrue

right before an execution of Step 2e. Consider any optimum phylogenyT ∗
Mj

wherec(v) mutates

exactly once and on the edge(r, p). PhylogenyT ∗
Mj

can be decomposed intoT ∗
Mj

(c(v), 0) ∪

T ∗
Mj

(c(v), 1) ∪ (r, p) with length l = length(T ∗
Mj

(c(v), 0)) + length(T ∗
Mj

(c(v), 1)) + d(r, p).

Again, sincec(v) mutates exactly once inT ∗
Mj

, all the taxa inM0 andM1 are also inT ∗
Mj

(c(v), 0)

and T ∗
Mj

(c(v), 1) respectively. LetT ′, T ′′ be arbitrary optimum phylogenies forM0 and M1

respectively. Sincep ∈ M0 and r ∈ M1 we know thatT ′ ∪ T ′′ ∪ (r, p) is a phylogeny forMj

with costlength(T ′)+length(T ′′)+d(r, p) ≤ l. By the inductive hypothesis, we know that an

optimum phylogeny forI can be constructed using any optimum phylogeny forMj . We have

now shown that using any optimum phylogeny forM0 andM1 and adding edge(r, p) we can
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construct an optimum phylogeny forMj . Therefore the proof follows by induction.

C. Initial Bounds

In this sub-section we bound the probability of correct guesses, analyze the running time

and show how to derandomize the algorithm. We perform two guesses at Steps 2a and 2c.

Lemmas 4.2 and 4.6 bound the probability that all the guessesperformed at these steps are

correct throughout the execution of the algorithm.

Lemma 4.2:The probability that all guesses performed at Step 2a are correct is at least4−q.

Proof: Implementation:The guess at Step 2a is implemented by selectingv uniformly at

random from∪iN(Mi).

To prove the lemma, we first show that the number of iterationsof the while loop (step

2) is at mostq. Consider any one iteration of the while loop. Sincev is a non-isolated vertex

of the conflict graph,c(v) shares all four gametes with some other characterc′ in someMj .

Therefore, in every optimum phylogenyT ∗
Mj

that mutatesc(v) exactly once, there exists a path

P starting with edgee1 and ending withe3 both mutatingc′, and containing edgee2 mutating

c(v). Furthermore, the pathP contains no other mutations ofc(v) or c′. At the end of the current

iteration,Mj is replaced withM0 andM1. Both subtrees ofT ∗
Mj

containingM0 andM1 contain

(at least) one mutation ofc′ each. Therefore,penalty(M0) + penalty(M1) < penalty(Mj).

Sincepenalty(I) ≤ q, there can be at mostq iterations of the while loop.

We now bound the probability. Intuitively, if| ∪i N(Mi)| is very large, then the probability

of a correct guess is large, since at mostq out of | ∪i N(Mi)| characters can mutate multiple

times in T ∗
Mj

. On the other hand if| ∪i N(Mi)| = q then we terminate the loop. Formally, at

each iteration| ∪i N(Mi)| reduces by at least 1 (guessed vertexv is no longer in∪iN(Mi)).

Therefore, in the worst case (to minimize the probability ofcorrect guesses), we can haveq

iterations of the loop, withq + 1 non-isolated vertices in the last iteration and2q in the first

iteration. The probability in such a case that all guesses are correct is at least

(
q

2q
) × (

q − 1

2q − 1
) × . . . × (

1

q + 1
) =

1
(

2q

q

) ≥ 2−2q
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Application of Buneman Graphs:We now show thatr, p can be found efficiently. To prove

this we need some tools from the theory of Buneman graphs [24]. Let M be a set of taxa

defined by character setC of sizem. A Buneman graphF for M is a vertex induced subgraph

of the m-cube. GraphF contains verticesv if and only if for every pair of charactersi, j ∈ C,

(v[i], v[j]) ∈ Gi,j . Recall thatGi,j is the set of gametes (or projection ofM on dimensionsi, j).

Each edge of the Buneman graph is labeled with the character at which the adjacent vertices

differ.

We will use the Buneman graph to show how to incrementally extend a set of taxaM by

adding characters that share exactly two gametes with some existing character. As before, we

can assume without loss of generality that the all zeros taxon is present inM . Therefore if a

pair of characters share exactly two gametes then they are identical. Assume that we want to add

characteri to M and i′ ∈ M is identical toi. We extendM to M ′ by first adding the states on

characteri′ for all taxa. For the rest of the discussion letGi,j be the set of gametes shared between

charactersi, j in matrix M ′. We extendM ′ to M ′′ by adding a taxont s.t. t[i] = 0, t[i′] = 1 and

for all other charactersj, if (0, 1) /∈ Gj,i thent[j] = 1 elset[j] = 0. Since we introduced a new

gamete oni, i′, no pair of characters share exactly two gametes inM ′′. Therefore a Buneman

graphG′′ for M ′′ can be constructed as before. A Buneman graph is a median graph [24] and

clearly a subgraph of them + 1-cube, wherem + 1 is the number of characters inM ′′. Every

taxon inM ′ is present inG′′ by construction. Using the two properties, we have the following

lemma.

Lemma 4.3:Every optimum phylogeny for the taxa inM ′ defined over them + 1 characters

is contained inG′′(See Section 5.5, [24] for more details).

We now show the following important property on the extendedmatrix M ′′.

Lemma 4.4:If a pair of charactersc, c′ conflict in M ′′ then they conflict inM ′.

Proof: For the sake of contradiction, assume not. Clearlyi, i′ share exactly three gametes

in M ′′. Now consider any characterj and assume thatj, i shared exactly three gametes inM ′.

For the newly introduced taxont, t[i] = 0. If t[j] = 1, thenj, i cannot share(0, 1) gamete inM ′′

and therefore they do not conflict. Ift[j] = 0, then the newly introduced taxon creates the(0, 0)

gamete which should be present in all pairs of characters. Now consider the pair of characters

(j, i′). If t[j] = 1, then in any taxont′ of M ′, if t′[j] = 1 then t′[i] = 1 and thereforet[i] = 1

(sincei, i′ are identical on all taxa exceptt) and therefore(1, 1) cannot be a newly introduced
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gamete. Ift[j] = 0, then there exists some taxont′ for which t′[j] = 0 andt′[i] = 1 and therefore

t′[i′] = 1 and again(0, 1) cannot be a newly introduced gamete. Finally consider any pair of

charactersj, j′. If taxon t introduces gamete(0, 1), then there exists some taxont′ with t′[j] = 0

and t′[i] = 1 If t′[j′] = 1, then (0, 1) cannot be a new gamete. Ift′[j′] = 0, then t[j′] = 0 and

not 1. The case when(1, 0) is introduced byt is symmetric. Finally ift introduces(1, 1) then

consider any taxont′ with t′[i] = 1. It has to be the case thatt′[j] = t′[j′] = 1, and therefore

(1, 1) cannot be a newly introduced gamete.

We now have the following lemma.

Lemma 4.5:In every optimum phylogenyT ∗
M , the conflict graph on the set of taxa inT ∗

M

(Steiner vertices included) is the same as the conflict graphon M .

Proof: We say that a subgraphF ′ of F is the same as an edge labeled treeT if F ′ is a tree

andT can be obtained fromF ′ by suppressing degree-two vertices. A phylogenyT is contained

in a graphF if there exists an edge-labeled subgraphF ′ that is the same as the edge labeled (by

function µ) phylogenyT . We know from Lemma 4.3 that all optimum phylogeniesT ∗
M for M

is contained in the (extended) Buneman graph ofM . Lemma 4.4 shows that the conflict graph

on M ′′ (and therefore on the extended Buneman graph ofM ′′) is the same as the conflict graph

of M .

Lemma 4.6:The probability that all guesses performed at Step 2c are correct is at least2−q.

Proof: Implementation:We first show how to perform the guess efficiently. For every

characteri, we perform the following steps in order.

1) if all taxa in M0 contain the same states in i, then fix r[i] = s

2) if all taxa in M1 contain the same states in i, then fix r[i] = s

3) if r[i] is unfixed then guessr[i] uniformly at random from{0, 1}

Assuming that the guess at Step 2a (Figure 4) is correct, we know that there exists an optimum

phylogenyT ∗
Mj

on Mj wherec(v) mutates exactly once. Lete ∈ T ∗
Mj

s.t. c(v) ∈ µ(e). Let r′

be an end point ofe s.t. r′[c(v)] = 1 and p′ be the other end point. If the first two conditions

hold with the same states, then characteri does not mutate inMj . In such a case, we know

that r′[i] = s, sinceT ∗
Mj

is optimal and the above method ensures thatr[i] = s. Notice that

if both conditions are satisfied simultaneously with different values ofs then i and c(v) share

exactly two gametes inMj and thereforei, c(v) ∈ µ(e). Hence,r′[i] = r[i]. We now consider

the remaining cases when exactly one of the above conditionshold. We show that ifr[i] is fixed
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to s thenr′[i] = s. Note that in such a case at least one ofM0, M1 contain both the states on

i and i, c(v) share at least 3 gametes inMj . The proof can be split into two symmetric cases

based on whetherr is fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa inM0 contain the same

states on i. Therefore, the taxa inM1 should contain both states oni. Hencei mutates in

T ∗
Mj

(c(v), 1). For the sake of contradiction, assume thatr′[i] 6= s. If i /∈ µ(e) then p′[i] 6= s.

However, all the taxa inM0 contain states. This implies thati mutates inT ∗
Mj

(c(v), 0) as well.

Thereforei andc(v) share all four gametes onT ∗
Mj

. Howeveri andc(v) share at most 3 gametes

in Mj - one inM0 and at most two inM1. This leads to a contradiction to Lemma 4.5. Oncer

is guessed correctly,p can be computed since it is is identical tor in all characters exceptc(v)

and those that share two gametes withc(v) in Mj . We make a note here that we are assuming

that e does not mutate any character that does not share two gameteswith c(v) in Mj . This

creates a small problem that although the length of the tree constructed is optimal,r andp could

be degree-two Steiner vertices. If after constructing the optimum phylogenies forM0 andM1,

we realize that this is the case, then we simply add the mutation adjacent tor andp to the edge

(r, p) and return the resulting phylogeny where bothr andp are not degree-two Steiner vertices.

The above implementation therefore requires only guessingstates corresponding to the re-

maining unfixed characters ofr. If a characteri violates the first two conditions, theni mutates

once inT ∗
Mj

(i, 0) and once inT ∗
Mj

(i, 1). If r[i] has not been fixed, then we can associate a pair

of mutations of the same characteri with it. At the end of the current iterationMj is replaced

with M0 and M1 and each contains exactly one of the two associated mutations. Therefore

if q′ characters are unfixed thenpenalty(M0) + penalty(M1) ≤ penalty(Mj) − q′. Since

penalty(I) ≤ q, throughout the execution of the algorithm there areq unfixed states. Therefore

the probability of all the guesses being correct is2−q.

This completes our analysis for upper bounding the probability that the algorithm returns an

optimum phylogeny. We now analyze the running time. We use the following lemma to show

that we can efficiently construct optimum phylogenies at Step 3 in the pseudo-code:

Lemma 4.7:For a set of taxaM , if the number of non-isolated vertices of the associated

conflict graph ist, then an optimum phylogenyT ∗
M can be constructed in timeO(3s6t + nm2),

wheres = penalty(M).
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Proof: We use the approach described by Gusfield and Bansal (see Section 7 of [16])

that relies on the Decomposition Optimality Theorem for recurrent mutations. We first construct

the conflict graph and identify the non-trivial connected components of it in timeO(nm2). Let

κi be the set of characters associated with componenti. We compute the Steiner minimum

tree Ti for character setκi. The remaining conflict-free characters inC \ ∪iκi can be added

by contracting eachTi to vertices and solving the perfect phylogeny problem usingGusfield’s

linear time algorithm [14].

Sincepenalty(M) = s, there are at mosts + t + 1 distinct bit strings defined over character

set ∪iκi. The Steiner space is bounded by2t, since | ∪i κi| = t. Using the Dreyfus-Wagner

recursion [22] the total run-time for solving all Steiner tree instances isO(3s+t2t).

Lemma 4.8:The algorithm described solves the BNPP problem in timeO(18q + qnm2) with

probability at least8−q.

Proof: For a set of taxaMi ∈ L (Step 3, Figure 4), using Lemma 4.7 an optimum

phylogeny can be constructed in timeO(3si6ti + nm2) wheresi = penalty(Mi) and ti is the

number of non-isolated vertices in the conflict graph ofMi. We know that
∑

i si ≤ q (since

penalty(I) ≤ q) and
∑

i ti ≤ q (stopping condition of thewhile loop). Therefore, the total

time to reconstruct optimum phylogenies for allMi ∈ L is bounded byO(18q + nm2). The

running time for the while loop is bounded byO(qnm2). Therefore the total running time of

the algorithm isO(18q + qnm2). Combining Lemmas 4.2 and 4.6, the total probability that all

guesses performed by the algorithm is correct is at least8−q.

Lemma 4.9:The algorithm described above can be derandomized to run in time O(72q +

8qnm2).

Proof: It is easy to see that Step 2c can be derandomized by exploringall possible states

for the unfixed characters. Since there are at mostq unfixed characters throughout the execution,

there are2q possibilities for the states.

However, Step 2a cannot be derandomized naively. We use the technique of bounded search

tree [6] to derandomize it efficiently. We select an arbitrary vertexv from ∪iN(Mi). We explore

both the possibilities on whetherv mutates once or multiple times. We can associate a search

(binary) tree with the execution of the algorithm, where each node of the tree represents a

selectionv from ∪iN(Mi). One child edge represents the execution of the algorithm assumingv

mutates once and the other assumingv mutates multiple times. In the execution wherev mutates
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multiple times, we select a different vertex from∪iN(Mi) and again explore both paths. The

height of this search tree can be bounded by2q because at mostq characters can mutate multiple

times. The path of height2q in the search tree is an interleaving ofq characters that mutate once

andq characters that mutate multiple times. Therefore, the sizeof the search tree is bounded by

4q.

Combining the two results, the algorithm can be derandomized by solving at most8q different

instances of Step 3 while traversing the while loop8q times for a total running time ofO(144q +

8qnm2). This is, however, an over-estimate. Consider any iteration of the while loop whenMj

is replaced withM0 andM1. If a state in characterc is unfixed and therefore guessed, we know

that there are two associated mutations of characterc in bothM0 andM1. Therefore at iteration

i, if q′i states are unfixed, thenpenalty(M0)+ penalty(M1) ≤ penalty(Mj)− q′i. At the end

of the iteration we can reduce the value ofq used in Step 2 byq′i, since the penalty has reduced

by q′i. Intuitively this implies that if we perform a total ofq′ guesses (or enumerations) at Step

2c, then at Step 3 we only need to solve Steiner trees onq − q′ characters. The additional cost

2q′ that we incur results in reducing the running time of Step 3 toO(18q−q′ + qnm2). Therefore

the total running time isO(72q + 8qnm2).

D. Improving the Run Time Bounds

In Lemma 4.9, we showed that the guesses performed at Step 2c of the pseudo-code in Figure 4

do not affect the overall running time. We can also establisha trade-off along similar lines for

Step 2a that can reduce the theoretical run-time bounds. We now analyze the details of such a

trade-off in the following lemma:

Lemma 4.10:The algorithm presented above runs in timeO(21q + 8qnm2).

Proof:

For the sake of this analysis, we can declare each character to be in either a ‘marked’ state

or an ‘unmarked’ state. At the beginning of the algorithm, all the characters are ‘unmarked’.

As the algorithm proceeds, we will mark characters to indicate that the algorithm has identified

them as mutating more than once inT ∗

We will then examine two parameters,ρ andγ, which specify the progress made by the de-

randomized algorithm in either identifying multiply mutating characters or reducing the problem

to sub-problems of lower total penalty. Consider the set of charactersS such that for allc ∈ S,
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characterc is unmarked and there exists matrixMi such thatc mutates more than once inT ∗
Mi

. We

define parameterρ to be|S|. Parameterρ, intuitively, refers to the number of characters mutating

more than once (within treesT ∗
Mi

) that have not been identified yet. Parameterγ denotes the

sum of the penalties of the remaining matricesMi, γ =
∑

i penalty(Mi).

Consider Step 2a of Figure 4, when the algorithm selects characterc(v). After selectingc(v),

the algorithm proceeds to explore both cases whenc(v) either mutates once or multiple times

in T ∗
Mj

. In the first case,penalty(T ∗
Mj

) decreases by at least 1. Therefore,γ decreases by at

least 1. In the second case, the algorithm has successfully identified a multiple mutant. We now

proceed to mark characterc(v), which reducesρ by 1 and leavesγ unchanged.

If the main loop at Step 3 terminates, then the algorithm findsoptimal Steiner trees using

the Dreyfus-Wagner recursion and the run-time is bounded by18γ using Lemma 4.7 as before.

Therefore, the running time of this portion of our algorithmcan be expressed as:

T (γ, ρ) ≤ max{18γ, T (γ − 1, ρ) + T (γ, ρ − 1) + 1}

FunctionT (γ, ρ) can be upper-bounded by18γ+1(19/17)ρ+1. We can verify this by induction.

The right-side of the above equation is:

max{18γ, 18γ(19/17)ρ+1 + 18γ+1(19/17)ρ + 1}

= max{18γ, 18γ(19/17)ρ(19/17 + 18) + 1}

≤ max{18γ, 18γ(19/17)ρ(19/17 + 19)}

= 18γ+1(19/17)ρ+1

Since we know thatγ ≤ q andρ ≤ q, we can boundT (q, q) = O(20.12q). Therefore, we can

improve the run-time bound for the complete algorithm toO(20.12q + 8qnm2).

We note that further improvements may be achievable in practice for moderateq by pre-

processing possible Steiner tree instances. If all Steinertree problem instances on theq-cube

are solved in a pre-processing step, then our running time would depend only on the number of

iterations of the while loop, which isO(8qnm2). Such pre-processing would be impossible to

perform with previous methods. Alternate algorithms for solving Steiner trees may be faster in

practice as well.
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V. EXPERIMENTS

We tested both algorithms using a selection of non-recombining DNA sequences. These include

mitochondrial DNA samples from two human populations [28] and a chimpanzee population [27],

Y chromosome samples from human [19] and chimpanzee populations [27], and a bacterial DNA

sample [21]. Such non-recombining data sources provide a good test of the algorithms’ ability to

perform inferences in situations where recurrent mutationis the probable source of any deviation

from the perfect phylogeny assumption.

We implemented variants of both algorithms. The simple algorithm was derandomized and

used along with a standard implementation of the Dreyfus-Wagner routine. For the FPT algo-

rithm, we implemented the randomized variant described above using an optimized Dreyfus-

Wagner routine. The randomized algorithm takes two parameters, q and p, where q is the

imperfectness andp is the maximum probability that the algorithm has failed to find an optimal

solution of imperfectnessq. On each random trial, the algorithm tallies the probability of failure

of each random guess, allowing it to calculate an upper boundon the probability that that trial

failed to find an optimal solution. It repeats random trials until the accumulated failure probability

across all trials is below the thresholdp. An error threshold of 1% was used for the present

study.

The results are summarized in Table I. Successive columns ofthe table list the source of

the data, the input size, the optimal penaltyq, the parsimony score of the resulting tree, the

run times of both of our algorithms in seconds, and the numberof trials the randomized FPT

algorithm needed to reach a 1% error bound. All run times reported are based on execution

on a 2.4 GHz Intel P4 computer with 1 Gb of RAM. One data point, the human mtDNA

sample from the Buddhist population, was omitted from the results of the simple algorithm

because it failed to terminate after 20 minutes of execution. All other instances were solved

optimally by the simple algorithm and all were solved by the randomized FPT algorithm. The

randomized variant of the FPT algorithm in all but one case significantly outperformed the

derandomized simple algorithm in run time. This result thatmay reflect the superior asymptotic

performance of the FPT algorithm in general, the performance advantage of the randomized

versus the deterministic variants, and the advantage of a more highly optimized Dreyfus-Wagner

subroutine. The randomized algorithm also generally needed far fewer trials to reach a high
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probability of success than would be expected from the theoretical error bounds, suggesting that

those bounds are quite pessimistic for realistic data sets.Both implementations, however, appear

efficient for biologically realistic data sets with moderate imperfection.

We can compare the quality of our solutions to those producedon the same data sets by other

methods. Our methods produced trees of identical parsimonyscore to those derived by thepars

program from thePHYLIP package [10]. However while we can guarantee optimality of the

returned results,pars does not provide any guarantee on the quality of the tree. (Note that our

preliminary paper [23] incorrectly stated thatpars produced an inferior tree on the chimpanzee

mtDNA data set.) Our methods also yielded identical output for the chimpanzee Y chromosome

data to a branch-and-bound method used in the paper in which that data was published [27].

TABLE I

EMPIRICAL RESULTS ON ACOLLECTION OF REAL SNP VARIATION DATA SETS

Description Rows

× Cols

q Pars.

Score

Run

time –

Simple

(secs)

Run

time

– FPT

(secs)

trials

mtDNA, genus

Pan [27]

24×1041 2 63 0.59 0.14 25

chr Y, genus Pan

[27]

15×98 1 99 0.33 0.02 12

Bacterial DNA

sequence [21]

17×1510 7 96 0.47 4.61 262

HapMap chr Y,

4 ethnic groups

[19]

150×49 1 16 0.3 0.02 16

mtDNA, Humans

(Muslims) [28]

13×48 3 30 0.61 0.28 117

mtDNA, Humans

(Buddhists) [28]

26×48 7 43 —- 18.44 1026

VI. CONCLUSIONS

We have presented two new algorithms for inferring optimal near-perfect binary phylogenies.

The algorithms substantially improve on the running times of any previous methods for the
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BNPP problem. This problem is of considerable practical interest for phylogeny reconstruction

from SNP data. Furthermore, our algorithms are easily implemented, unlike previous theoretical

algorithms for this problem. The algorithms can also provide guaranteed optimal solutions in

their derandomized variants, unlike popular fast heuristics for phylogeny construction. Exper-

iments on several non-recombining variation data sets havefurther shown the methods to be

generally extremely fast on real-world data sets typical ofthose for which one would apply the

BNPP problem in practice. Our algorithms perform in practice substantially better than would

be expected from their worst case run time bounds, with both proving practical for at least

some problems withq as high as seven. The FPT algorithm in its randomized variantshows

generally superior practical performance to the simple algorithm. In addition, the randomized

algorithm appears to find optimal solutions for these data sets in far fewer trials than would be

predicted from the worst-case theoretical bounds. Even thedeterministic variant of the simple

algorithm, though, finds optimal solutions in under one second for all but one example. The

algorithms presented here thus represent the first practical methods for provably optimal near-

perfect phylogeny inference from biallelic variation data.
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