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Abstract

We consider the problem of reconstructing near-perfectqg@netic trees using binary character
states (referred to as BNPP). A perfect phylogeny assuna¢®tery character mutates at most once in
the evolutionary tree, yielding an algorithm for binary caer states that is computationally efficient
but not robust to imperfections in real data. A near-perfdotlogeny relaxes the perfect phylogeny
assumption by allowing at most a constant number of additiorutations. We develop two algorithms
for constructing optimal near-perfect phylogenies andsig® empirical evidence of their performance.
The first simple algorithm is fixed parameter tractable whes tumber of additional mutations and
the number of characters that share four gametes with soher oharacter are constants. The sec-
ond, more involved algorithm for the problem is fixed paragndtactable when only the number of
additional mutations is fixed. We have implemented both rilgms and shown them to be extremely
efficient in practice on biologically significant data sethis work proves the BNPP problem fixed
parameter tractable and provides the first practical plerietjc tree reconstruction algorithms that find
guaranteed optimal solutions while being easily impleradr@ind computationally feasible for data sets

of biologically meaningful size and complexity.

Index Terms

computations on discrete structures, trees, biology anetgss

. INTRODUCTION

Reconstruction of evolutionary trees is a classical comatpartal biology problem [15], [24].
In the maximum parsimony (MP) model of this problem one se¢kkssmallest tree to explain a
set of observed organisms. Parsimony is a particularlyap@te metric for trees representing
short time scales, which makes it a good choice for infergmaglutionary relationships among
individuals within a single species or a few closely relaspecies. The intraspecific phylogeny
problem has become especially important in studies of hugeretics now that large-scale
genotyping and the availability of complete human genontggieeces have made it possible to
identify millions of single nucleotide polymorphisms (S§H26], sites at which a single DNA
base takes on two common variants.

Minimizing the length of a phylogeny is the problem of findittge most parsimonious tree,
a well known NP-complete problem [12]. Researchers have thcused on either sophisticated

heuristics or solving optimally for special cases (e.g.di@arameter variants [1], [8], [20]).
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Previous attempts at such solutions for the general parginppoblem have only produced
theoretical results, yielding algorithms too complicafed practical implementation. A large
number of related works have been published, but it is imptesso mention all of them here.

In this work, we focus on the the case when the set of charatédes is binary. In this
setting, the input is often represented as:anm matrix /. Then rows of the matrix (taxa) can
be viewed as points on an-cube. Therefore, the problem is equivalent to finding therer
minimum tree in a hypercube. In the binary state case, a geylpis calledperfectif its length
equalsm. Gusfield showed that such phylogenies can be reconstruct@tear time [14].

If there exists no perfect phylogeny for inpiit then one option is to slightly modify so
that a perfect phylogeny can be constructed for the reguitiput. Upper bounds and negative
results have been established for such problems. For oestdday and Sankoff [7], showed
that finding the maximum subset of characters containingriegephylogeny is NP-complete
while Damaschke [8] showed fixed parameter tractability thee same problem. The problem
of reconstructing the most parsimonious tree without myawlif the input/ seems significantly
harder.

Fernandez-Baca and Lagergren recently considered théeprald reconstructing optimal near-
perfect phylogenies [11], which assume that the size of gienal phylogeny is at most larger
than that of a perfect phylogeny for the same input size. Tdeseloped an algorithm to find
the most parsimonious tree in timen®@20(@*s>) wheres is the number of states per character,
n is the number of taxa anah is the number of characters. This bound may be impractical fo
sizes ofm to be expected from SNP data, even for modetat&iven the importance of SNP
data, it would therefore be valuable to develop methods @bleandle largen for the special

case ofs = 2, a problem we call Binary Near Perfect Phylogenetic treemstruction (BNPP).

A. Our Work

Algorithm 1: We first present theoretical and practical results on themgbtsolution of the
BNPP problem. We completely describe and analyze an im¢uatigorithm for the BNPP problem
that has running timé((72x)nm +mnm?), wherex is the number of characters that violate the
four gametecondition, a test of perfectness of a data set explainedwb&limcer < m, this result
significantly improves the prior running time. Furthermaiee complexity of the previous work

would make practical implementation daunting; to our kremge no implementation of it has
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ever been attempted. Our results thus describe the firsigabphylogenetic tree reconstruction
algorithm that finds guaranteed optimal solutions whilengetomputationally feasible for data
sets of biologically relevant complexity. A preliminary gex on this algorithm appeared as
Sridhar et al. [23].
Algorithm 2: We then present a more involved algorithm that runs in tit@17 + 87nm?).
Fernandez-Baca and Lagergren [11] in concluding remaie $hat the most important open
problem in the area is to develop a parameterized algorithmprave 1W[¢] hardness for the
near-perfect phylogeny problem. We make progress on thes gwoblem by showing for the
first time that BNPP is fixed parameter tractable (FPT). Taeaehthis, we use a divide and
conquer algorithm. Each divide step involves performinggaess’ (or enumeration) with cost
exponential ing. Finding the Steiner minimum tree ongacube dominates the run-time when
the algorithm bottoms out. The present work substantiafigroves on the time bounds derived
for a preliminary version of this algorithm, which was firsepented in Blelloch et al. [2].

We further implement variants of both algorithms and dertrates them on a selection of
real mitochondrial, Y-chromosome and bacterial data sEt® results demonstrate that both
algorithms substantially outperform their worst-caseetibbunds, yielding optimal trees with

high efficiency on real data sets typical of those for whicbhsalgorithms would be used in

practice.

Il. PRELIMINARIES

In defining formal models for parsimony-based phylogenystattion, we borrow definitions
and notations from a couple of previous works [11], [24]. Tiygut to a phylogeny problem is an
n x m binary matrix/ where rowsR(I) representnput taxaand are binary strings. The column
numbersC = {1,---,m} are referred to asharacters In a phylogenetic tregor phylogeny
each vertexv corresponds to a taxon (not necessarily in the input) andahaassociated label
l(v) € {0,1}™.

The following are equivalent definitions of a phylogeny, tbatf which have been used in
prior literature:

Definition 1: A phylogenyT’ for matrix [ is:

1) a treeT(V, E) with the following propertiesk(7) C I[(V(T")) and for all (u,v) € E(T),

H(l(u),l(v)) =1 where H is the Hamming distance.
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2) atreel’(V, E') with the following propertiesR(1) C I[(V(T')) andl({v € V(T")|degreév) <
2}) C R(I). That is, every input taxon appearsihand every leaf or degree-2 vertex is
an input taxon.

The following two definitions provide some useful termingyowhen discussing either defi-

nition of a phylogeny:

Definition 2: A vertex v of phylogenyT is terminal if /(v) € R(I) and Steinerotherwise.

Definition 3: For a phylogenyT’, length(T) = >, »epr) d(l(u),l(v)), whered is the
Hamming distance.

A phylogeny is called an optimum phylogeny if its length isnmized. We will assume that
both stated), 1 are present in all characters. Therefore the length of amaopt phylogeny is
at leastm. This leads to the following two definitions:

Definition 4: For a phylogenyl’ on input/, penalty(7') = length(7") — m; penalty(/) =
penalty(7TF"), whereT°" is any optimum phylogeny o.

Definition 5: A phylogeny 7' is called g-near-perfectif penalty(7) = ¢ and perfect if
penalty(7") = 0.

Note that in an optimum phylogeny, no two vertices share #meslabel. Therefore, we can
equivalently define an edge of a phylogeny(ast,) wheret; € {0, 1}™. Since we will always
be dealing with optimum phylogenies, we will drop the lahehdtion/(v) and usev to refer to
both a vertex and the taxon it represents in a phylogeny.

With the above definitions, we are now prepared to define ontralecomputational problem:

The BNPP problem: Given an integeg and ann x m binary input matrixZ, if penalty (/) < q,
then return an optimum phylogefiy, else declar@l L. The problem is equivalent to finding the
minimum Steiner tree on am-cube if the optimum tree is at mogtlarger than the number of
dimensionsn or declaringNl L otherwise. The problem is fundamental and therefore erpect
to have diverse applications besides phylogenies.
Definition 6: We define the followinghotations
. r[i] € {0,1}: the state in characterof taxonr
e u(e) : E(T) — 2¢: the set of all characters corresponding to edge (u,v) with the
property for anyi € u(e), uli] # v[i]. Note that for the first definition of a phylogeny
ple): E(T) — C.
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. for a set of taxal/, we useT}, to denote an optimum phylogeny di

We say that an edge mutatescharacter if i € u(e). We will use the following well known
definition and lemma on phylogenies.

Definition 7: Given matrixI, the set of gametes;,; ; for characters, j is defined asG; ; =
{(rz], 7[4])|r € R(I)}. Two characters, j sharet gametes in/ i.f.f. |G, ;| =t.
In other words, the set of gametés ; is a projection on the, j dimensions.

Lemma 2.1: [14] An optimum phylogeny for inputl is not perfect i.f.f. there exists two
characterg, j that share (all) four gametes in

Definition 8: (Conflict Graph [17]): A conflict graphG for matrix I with character set”
is defined as follows. Every vertexof G corresponds to unique charact¢p) € C'. An edge
(u,v) is added toG i.f.f. c(u),c(v) share all four gametes ih. Such a pair of characters are
defined to be irconflict

Note that if the conflict grapt contains no edges, then a perfect phylogeny can be coredruct
for I. Gusfield [14] provided an efficient algorithm to reconstragperfect phylogeny in such
cases.
Simplifications: We assume that the all zeros taxon is present in the inpuot|fusing our
freedom of labeling, we convert the data into an equivaleptii containing the all zeros taxon
(see section 2.2 of Eskin et al [9] for details). We also reenamy character that contains only
one state. Such characters do not mutate in the whole phyjogied are therefore useless in
any phylogeny reconstruction. The BNPP problem asks forr¢loenstruction of an unrooted
tree. For the sake of analysis, we will however assume th#bealphylogenies are rooted at the

all zeros taxon.

1. SIMPLE ALGORITHM

This section describes a simple algorithm for the reconstrm of a binary near-perfect
phylogenetic tree. Throughout this section, we will use ftinst definition of a phylogeny
(Definition 1).

We begin by performing the following pre-processing stegr. &very pair of characters, ¢’
if |G| =2, we (arbitrarily) remove charactet. After repeatedly performing the above step,
we have the following lemma:

Lemma 3.1:For every pair of characters, ¢”,

Gc’7c”| > 3.
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Fig. 1. (a) Phylogeny” and skeletors(T,C"), C' = {3,4}. Edges are labeled with characters that mutatnd super nodes
with tagst. (b) Transform to remove a degree 2 Steiner root from a supeée.nNote: the size of the phylogeny is unchanged.

We will assume that the above lemma holds on the input matnixttie rest of the paper.
Note that such characters$, ¢’ are identical (after possibly relabeling one characted are
usually referred to as non-informative. It is not hard towhhbat this preprocessing step does
not change the correctness or running time of our algorithm.

The following additional defintions are required for the atgstion and analysis of the simple
algorithm:

Definition 9: For any phylogenyl” and set of characters’ C C"

. asuper nodds a maximal connected subtrgé of 7" s.t. for all edges: € 7", u(e) ¢ C’

« the skeletonof 7', s(7,C"), is the tree that results when all super nodes are contrasted
a vertex. The vertex set of(7, C') is the set of super nodes. For all edges s(T', ("),
p(e) € C".

Definition 10: A tagt(u) € {0, 1} of super node: in s(7, C') has the property thatu)['] =
v[d] for all ¢ € ', verticesv € u; t{u][i] =0 for all i ¢ C".

Throughout this paper, we will assume without loss of gditgréthat we are working with
phylogenies and skeletons that are rooted at the all zexos &nd tag respectively. Furthermore,
the skeletons used in this work themselves form a perfedbgkeyy in the sense that no character
mutates more than once in the skeleton. Note that in sucletskel, tag («)[:] = 1 if and only
if character; mutates exactly once in the path from the rootitd-igure 1(a) shows an example

of a skeleton of a phylogeny. We will use the tesub-phylogenyto refer to a subtree of a
phylogeny.
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function buildNPP ( binary matrix I, integer ¢ )
1) let G(V, E) be the conflict graph of
2) letV,;, €V be the set of non-isolated vertices
3) for all M € 2¢(Veis) | | M| < ¢
a) construct rooted perfect phyloge®9(Vpp, Epp) ON
characters” \ M
b) definel: R — Vpp s.t. A(r) = uiff forall i € C\ M,
rli] = t(u)[i
c) Ty := linkTrees (PP)
d) if penalty(7}) < ¢ then returnT’

4) returnNI L

Fig. 2. Pseudo-code to find the skeleton.

Throughout the analysis, we fix an optimal phylogériyand show that our algorithm finds
it. We assume that both,,;, and its skeleton is rooted at the all zeros label and tag ctisphy.
The high level idea of our algorithm is to first guess the ctiara that mutate more than once
in T;,.. The algorithm then finds a perfect phylogeny on the remgimharacters. Finally, it
adds back the imperfect components by solving a Steineipn@gem. The algorithm is divided
into two functions,bui | dNPP andl i nkTr ees, whose pseudo-code is provided in Figures 2
and 3.

Functionbui | dNPP starts by determining the set of charactef¥;,;;) that corresponds to
the non-isolated vertices of the conflict graph in Step 2nfFeetc(V,;,), the algorithm then
selects by brute-force the set of charactefshat mutate more than once1y,,. Only characters
corresponding to non-isolated vertices can mutate mone dinae in any optimal phylogeny (a
simple proof follows from Buneman graphs [24]). Since alkdcters ofC \ M mutate exactly
once, the algorithm constructs a perfect phylogeny on th&acter set using Gusfield’s linear
time algorithm [14]. The perfect phylogeny is unique beeaatLemma 3.1. Note thaPP is
the skeletons(7,,;, C'\ M). Since the tags of the skeleton are unique, the algorithmncan
determine the super node where every taxon resides as défnfohction A in Step 3b. This

rooted skeletorP P is then passed into functidni nkTr ees to complete the phylogeny.
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function linkTrees ( skeleton Sk(V;, E;) )
1) let S := root(Sk)
2) let Rg :={s € R|\(s) = 5}
3) for all childrens; of S
a) let Sk; be subtree o5k rooted atS;
b) (r;,¢;) = linkTrees(Sk;)
4) letcost =3, ¢
5) for all ¢, letl; := u(S, ¢;)
6) for all i, definep; € {0,1}™ s.t. p;[l;] # r[l;] and for all
J# b pim = Ti[j]
7) letr:= Rg U (U{pi})
8) let D C C be the set of characters where taxarinliffer
9) guess root taxon of, rg € {0,1}™ s.t.Vi € C'\ D,Vu €
T, rsli] = uli]

10) letcs be the size of the optimal Steiner treeof) {rg}

11) return(rg, cost + cg)

Fig. 3. Pseudo-code to construct and link imperfect phyigege

Function| i nkTr ees takes a rooted skeletofik (sub-skeleton ofPP) as argument and
returns a tuple(r,c). The goal of functionl i nkTrees is to convert skeletorSk into a
phylogeny for the taxa that reside 5% by adding edges that mutate. Notice that using
function A, we know the set of taxa that reside in skelet®ta The phylogeny forSk is built
bottom-up by first solving the phylogenies on the sub-skeleboted at children super nodes of
Sk. Tuple (r, c) returned by function call tainkTrees(Sk) represents the costof the optimal
phylogeny when the label of the root vertex in the root sumetenof Sk is r. Let S = root(Sk)
represent the root super node of skelettin Ry is the set of input taxa that map to super node
S under function). Let its children super nodes I#g, S, . ... Assume that recursive calls to
i nkTr ees(S;) return(r;, ¢;). Notice that the parents of the set of rootsall reside in super
nodeS. The parents of; are denoted by; and are identical te; except in the character that

mutates in the edge connecting to S. Setr is the union ofp; and Rg, and forms the set of
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vertices inferred to be ir¥. SetD is the set of characters on which the labelsrafiiffer i.e.

for all i € D,3r,my € 7,1[1] # rfi]. In Step 9, we guess the ropt of super nodeS. This

guess is ‘correct’ if it is identical to the label of the roartex of S in 7,,,. Notice that we are
only guessing D| bits of rg. Corollary 3.3 of Lemma 3.2 along with optimality requirdsat

the label of the root vertex df,,; is identical tor in all the character§€’ \ D:

Lemma 3.2:There exists an optimal phylogefiy,, that does not contain any degree 2 Steiner
roots in any super node.

Proof: Figure 1(b) shows how to transform a phylogeny that viol@tesproperty into one
that doesn’t. RoofLO is degree 2 Steiner and is moved into parent supernodd aSincel0
was Steiner, the transformed tree contains all input. [ |

Corollary 3.3: In T,,;, the LCA of the setr is the root of super nod§.

In step 10, the algorithm finds the cost of the optimum Stetree for the terminal set of
taxaT U {rs}. We use Dreyfus-Wagner recursion [22] to compute this mimmSteiner tree.
The function now returnggs along with the cost of the phylogeny rootedSmwhich is obtained
by adding the cost of the optimum Steiner treeSino the cost of the phylogenies rootedcat
The following Lemma bounds the running time of our algoritand completes the analysis:

Lemma 3.4:The algorithm described above runs in ti®é(18x)9nm +nm?) and solves the
BNPP problem with probability at leagt??. The algorithm can be easily derandomized to run
in time O((72x)%nm + nm?).

Proof: The probability of a correct guess at Step 9 in functiomk Tr ees is exactly2~17!.
Notice that the Steiner tree in super nofléhas at leastD| edges. Sincg@enalty(T,,:) < ¢,
we know that there are at mo&t edges that can be added in all of the recursive calls to
linkTrees. Therefore, the probability that all guesses at Step 9 aneciis at leasR~2¢. The
time to construct the optimum Steiner tree in step 10(8/7/2/°1). Assuming that all guesses are
correct, the total time spent in Step 10 over all recursivks &g O(3%729). Therefore, the overall
running time of the randomized algorithmd¥(18x)nm-+nm?). To implement the randomized
algorithm, since we do not know if the guesses are correctcavesimply run the algorithm
for the above time, and if we do not have a solution, then weareAlthough presented as
a randomized algorithm for ease of exposition, it is not herdsee that the algorithm can be
derandomized by exploring all possible roots at Ste@®e derandomized algorithm has total

running timeO((72x)%nm + nm?). ]
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IV. FIXED PARAMETER TRACTABLE ALGORITHM

This section deals with the complete description and amsabfsour fixed parameter tractable
algorithm for the BNPP problem. Throughout this section wik use the second definition of
a phylogeny (Definition 1). For ease of exposition, we firsgatide a randomized algorithm for
the BNPP problem that runs in tim@(18¢ + gnm?) and returns an optimum phylogeny with
probability at least8~7. We later show how to derandomize it. In sub-section IV-A, fivst
provide the complete pseudo-code and describe it. In scieedV-B, we prove the correctness
of the algorithm. In sub-section IV-C, we upper-bound thening time for the randomized and
derandomized algorithms and the probability that the ramided algorithm returns an optimum
phylogeny. The above work follows that presented in a piiekry paper on the topic [2]. Finally,
in sub-section IV-D, we show how to tighten the above boundshe derandomized algorithm

to achieve our final result aD (217 4 8/nm?) run time.

A. Description

We begin with a high-level description of our randomizedbaildpm. The algorithm iteratively
finds a set of edgeg’ that decomposes an optimum phylogéfjyinto at mostg components.
An optimum phylogeny for each component is then constructgidg a simple method and
returned along with edge& as an optimum phylogeny faf.

We can alternatively think of the algorithm as a recursiveidg and conquer procedure. Each
recursive call to the algorithm attempts to reconstruct gimmum phylogeny for an input matrix
M. The algorithm identifies a charactess.t. there exists an optimum phylogefy, in which
¢ mutates exactly once. Therefore, there is exactly one edgéd’;, for which ¢ € u(e). The
algorithm, then guesses the vertices that are adjaceata®r, p. The matrix M/ can now be
partitioned into matrices/0 and M1 based on the state at characteClearly all the taxa in
M1 reside on one side of and all the taxa inM/0 reside on the other side. The algorithm
addsr to M1, p to M0 and recursively computes the optimum phylogeny 69 and AM/1. An
optimum phylogeny forl/ can be reconstructed as the unioraal optimum phylogeny fof\/0
and M1 along with the edgér, p). We require at mosg recursive calls. When the recursion
bottoms out, we use a simple method to solve for the optimuyhogleny.

We describe and analyze the iterative method which flatleesabove recursion to simplify

the analysis. For the sake of simplicity, we also define thieiang notations:
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buildNPP(i nput matrix I)
1) let L:={I},E:=10
2) while |Uuer N(M;)| > q
a) guess vertex v from Uy,eN(M;), |et
ve N(M;)
b) et MO := M,;(c(v),0) and M1 := M;(c(v),1)
C) guess taxa r and p
d) add » to M1, p to MO and (r,p) to E
e) remove M; from L, add M0 and M1 to L
3) for each M; € L conpute an opti mum phyl ogeny
T;
4) return EU(UT;)

Fig. 4. Pseudo-code to solve the BNPP problem. Fo\alle L, N(M;) is the set of non-isolated vertices in the conflict
graph of M;. Guess at Step 2a is correct i.f.f. there exiﬁ‘ﬁ.j where c(v) mutates exactly once. Guess at Step 2c is correct
i.f.f. there existsT’y;, wherec(v) mutates exactly once and edgep) € Ty, with rc(v)] = 1, ple(v)] = 0. Implementation

details for Steps 2a, 2c and 3 are provided in Section IV-C.

. For the set of taxa/, M(i, s) refers to the subset of taxa that contains staé¢ character
1.
. For a phylogenyl" and charactei that mutates exactly once ifi, 7'(i, s) refers to the

maximal subtree of that contains state on charactet.

The pseudo-code for the above described algorithm is pedvid Figure 4. The algorithm
performs ‘guesses’ at Steps 2a and 2c. If all the guessesrperdl by the algorithm are ‘correct’
then it returns an optimum phylogeny. The guess at Step 2arisat if and only if there exists
Ty, where c(v) mutates exactly once. The guess at Step 2c is correct if ahdibthere
existsT}; wherec(v) mutates exactly once and edgep) € T}, with rc(v)] = 1, ple(v)] =
0. Implementation details for Steps 2a, 2c and 3 are provide8dction IV-C. An example

illustrating the reconstruction is provided in Figure 5.
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Fig. 5. Example illustrating the reconstruction. Undentyiphylogeny isT;; taxar andp (both could be Steiner) are guessed
to createE£ = {(10000, 10100), (01000, 01010)}; F induces three components #. When all taxa in77 are considered,
character3 conflicts with 1,2 and 5 and characted conflicts with 1 and2; two components are perfect (penalty 0) and one

has penalty 2penalty(I) =g4.f penalty(T7) = 7.

B. Correctness

We will now prove the correctness of the pseudo-code un@eassumption that all the guesses
performed by our algorithm are correct. Specifically, wel sfilow that ifpenalty(/) < g then
functionbui | dNPP returns an optimum phylogeny. The following lemma provesdbrrectness
of our algorithm.

Lemma 4.1:At any point in execution of the algorithm, an optimum phydag for I can be
constructed a#’ U (U;T;), whereT; is any optimum phylogeny forM; € L.

Proof: We prove the lemma using induction. The lemma is clearly &tutne beginning of
the routine wherl. = {7}, E = (). As inductive hypothesis, assume that the above propettyes
right before an execution of Step 2e. Consider any optimuylmenyT;\}j wherec(v) mutates
exactly once and on the edde p). PhylogenyT}, can be decomposed inffj, (c(v),0) U
Ty, (c(v), 1) U (1, p) with lengthl = length(7}; (c(v),0)) + length(T} (c(v),1)) + d(r,p).
Again, sincer(v) mutates exactly once ifiy, , all the taxa in\/0 and M1 are also ifl;; (c(v), 0)
and T]’(/[j(c(v), 1) respectively. Letl”, T" be arbitrary optimum phylogenies foil/0 and M1
respectively. Since € M0 andr € M1 we know that?” U T" U (r,p) is a phylogeny for);
with costlength(7")+length(7")+d(r,p) < . By the inductive hypothesis, we know that an
optimum phylogeny for/ can be constructed using any optimum phylogeny ¥6r We have

now shown that using any optimum phylogeny fai0 and M1 and adding edgér, p) we can
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construct an optimum phylogeny fae;. Therefore the proof follows by induction. [ |

C. Initial Bounds

In this sub-section we bound the probability of correct gess analyze the running time
and show how to derandomize the algorithm. We perform twosges at Steps 2a and 2c.
Lemmas 4.2 and 4.6 bound the probability that all the guepse®rmed at these steps are
correct throughout the execution of the algorithm.

Lemma 4.2:The probability that all guesses performed at Step 2a amedtois at leasti 9.

Proof: ImplementationThe guess at Step 2a is implemented by selectimgpiformly at

random fromu; N (M;).

To prove the lemma, we first show that the number of iteratiointhe whi | e loop (step
2) is at mostg. Consider any one iteration of the while loop. Sincés a non-isolated vertex
of the conflict graph¢(v) shares all four gametes with some other charactén some ;.
Therefore, in every optimum phylogery;, that mutates:(v) exactly once, there exists a path
P starting with edge:; and ending withes both mutatingc’, and containing edge, mutating
c(v). Furthermore, the patk contains no other mutations ofv) or ¢’. At the end of the current
iteration, M; is replaced with\/0 and /1. Both subtrees oT;\}j containingM 0 and M1 contain
(at least) one mutation af each. Thereforepenalty(M0) 4 penalty(M1) < penalty(M/;).
Sincepenalty(/) < ¢, there can be at mostiterations of the while loop.

We now bound the probability. Intuitively, ifu; N(M;)| is very large, then the probability
of a correct guess is large, since at m@stut of | U; N(M;)| characters can mutate multiple
times inTy; . On the other hand if U; N(M;)| = ¢ then we terminate the loop. Formally, at
each iteration U; N(M;)| reduces by at least 1 (guessed verteds no longer inU; N (M;)).
Therefore, in the worst case (to minimize the probabilitycofrect guesses), we can haye
iterations of the loop, with; + 1 non-isolated vertices in the last iteration afgin the first
iteration. The probability in such a case that all guessescarrect is at least

1

q q—1 1 Y
(?q)x(&]j)x...x(ﬁ—l):(?q)ZQ
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Application of Buneman Graphsie now show that, p can be found efficiently. To prove
this we need some tools from the theory of Buneman graphs [22] M/ be a set of taxa
defined by character sét of sizem. A Buneman graph¥’ for M is a vertex induced subgraph
of the m-cube. GraphF' contains vertices if and only if for every pair of charactersj € C,
(v[i],v[j]) € G;;. Recall thatG; ; is the set of gametes (or projection &f on dimensions, j).
Each edge of the Buneman graph is labeled with the charattwhiah the adjacent vertices
differ.

We will use the Buneman graph to show how to incrementallgmta set of taxa/ by
adding characters that share exactly two gametes with somtng character. As before, we
can assume without loss of generality that the all zerosnag@resent inM/. Therefore if a
pair of characters share exactly two gametes then they antidgdl. Assume that we want to add
character to M and:’ € M is identical toi. We extend)M to M’ by first adding the states on
charactet’ for all taxa. For the rest of the discussiondet; be the set of gametes shared between
characters, j in matrix M’. We extendM’ to M" by adding a taxon s.t.t[i] = 0,¢[¢'] = 1 and
for all other characterg, if (0,1) ¢ G;; thent[j] =1 elset[j] = 0. Since we introduced a new
gamete on;, i/, no pair of characters share exactly two gameted/ih Therefore a Buneman
graphG” for M"” can be constructed as before. A Buneman graph is a mediah {#dpand
clearly a subgraph of the: + 1-cube, wheren + 1 is the number of characters iW”. Every
taxon in M’ is present inG” by construction. Using the two properties, we have the Valhg
lemma.

Lemma 4.3:Every optimum phylogeny for the taxa i’ defined over then + 1 characters
is contained inG”(See Section 5.5, [24] for more details).

We now show the following important property on the extendeatrix M"”.

Lemma 4.4:1f a pair of characterg, ¢ conflict in A" then they conflict in)/’.

Proof: For the sake of contradiction, assume not. Clearly share exactly three gametes
in M"”. Now consider any charactgrand assume that i shared exactly three gametes/if.
For the newly introduced taxan ¢[i] = 0. If ¢[j] = 1, thenj, ¢ cannot shar¢0, 1) gamete in}\/"”
and therefore they do not conflict. 4fj] = 0, then the newly introduced taxon creates thg))
gamete which should be present in all pairs of characterst dimsider the pair of characters
(7,4). If t[j] = 1, then in any taxort’ of A/, if t'[j] = 1 thent'[i] = 1 and therefore|i] = 1

(sincei, " are identical on all taxa except and thereforg 1, 1) cannot be a newly introduced
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gamete. Ift[j] = 0, then there exists some taxdrfor whicht'[j] = 0 and#'[:] = 1 and therefore
t'[i'] = 1 and again(0,1) cannot be a newly introduced gamete. Finally consider atiry gja
characterg, j'. If taxont introduces gamet@), 1), then there exists some taxérwith ¢'[j] =0
andt'[i] = 1 If ¢'[j'] =1, then(0, 1) cannot be a new gamete.#f;'] = 0, thent[;'] = 0 and
not 1. The case wheil,0) is introduced byt is symmetric. Finally if¢ introduces(1, 1) then
consider any taxor’ with ¢'[i] = 1. It has to be the case th&{;] = ¢'[j'] = 1, and therefore
(1,1) cannot be a newly introduced gamete. u
We now have the following lemma.
Lemma 4.5:In every optimum phylogeny’,, the conflict graph on the set of taxa ¥y,
(Steiner vertices included) is the same as the conflict goaph/.
Proof: We say that a subgrapk’ of F' is the same as an edge labeled ffeé £’ is a tree
andT can be obtained fromt” by suppressing degree-two vertices. A phylogéhis contained
in a graphF if there exists an edge-labeled subgrdphhat is the same as the edge labeled (by
function 1) phylogenyT'. We know from Lemma 4.3 that all optimum phylogenigs for M
is contained in the (extended) Buneman graphvafLemma 4.4 shows that the conflict graph
on M" (and therefore on the extended Buneman graph/6J is the same as the conflict graph
of M. [ |
Lemma 4.6:The probability that all guesses performed at Step 2c aneciis at leasR ™.
Proof: Implementation:We first show how to perform the guess efficiently. For every

characteri, we perform the following steps in order.

1) if all taxa in /0 contain the same statein 4, then fixr[i] = s

2) if all taxa in M1 contain the same statein 4, then fixr[i| = s

3) if r[¢] is unfixed then guessi] uniformly at random from{0, 1}

Assuming that the guess at Step 2a (Figure 4) is correct, e kimat there exists an optimum
phylogenyT7y, on M; wherec(v) mutates exactly once. Lete T}, s.t.c(v) € u(e). Let r’
be an end point o¢ s.t.7'[c(v)] = 1 andp’ be the other end point. If the first two conditions
hold with the same state, then charactei does not mutate in/;. In such a case, we know
that r'[i] = s, sinceT}; is optimal and the above method ensures thédt= s. Notice that
if both conditions are satisfied simultaneously with diffierr values ofs theni and ¢(v) share
exactly two gametes in/; and therefore, c(v) € p(e). Hence,r'[i] = r[i]. We now consider
the remaining cases when exactly one of the above conditiolus We show that if-[:] is fixed
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to s thenr’[i] = s. Note that in such a case at least oneléf, /1 contain both the states on
i andi, c(v) share at least 3 gametes i;. The proof can be split into two symmetric cases

based on whether is fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa if/0 contain the same
states on i. Therefore, the taxa id/1 should contain both states an Hence: mutates in
Ty, (c(v), 1). For the sake of contradiction, assume thad] # s. If i ¢ u(e) thenp'[i] # s.
However, all the taxa id/0 contain states. This implies that mutates inl7; (c(v),0) as well.
Thereforei andc(v) share all four gametes dfy;, . However: andc(v) share at most 3 gametes
in M; - one inMO0 and at most two inV/1. This leads to a contradiction to Lemma 4.5. Once
is guessed correctly; can be computed since it is is identicalitan all characters excep{v)
and those that share two gametes with) in A/;. We make a note here that we are assuming
that e does not mutate any character that does not share two gamites(v) in M;. This
creates a small problem that although the length of the westwucted is optimal; andp could
be degree-two Steiner vertices. If after constructing thegnmum phylogenies forl/0 and M1,
we realize that this is the case, then we simply add the noutaiiljacent to- andp to the edge
(r,p) and return the resulting phylogeny where betandp are not degree-two Steiner vertices.
The above implementation therefore requires only guessiages corresponding to the re-
maining unfixed characters of If a character violates the first two conditions, thermutates
once inT}, (¢,0) and once iy, (i,1). If r[i] has not been fixed, then we can associate a pair
of mutations of the same charactewith it. At the end of the current iteration/; is replaced
with M0 and M1 and each contains exactly one of the two associated musatidmerefore
if ¢ characters are unfixed themnalty()0) + penalty(M1) < penalty(M;) — ¢'. Since
penalty(/) < g, throughout the execution of the algorithm there @unfixed states. Therefore
the probability of all the guesses being correcis. [ |
This completes our analysis for upper bounding the proltpliitat the algorithm returns an
optimum phylogeny. We now analyze the running time. We usgeftfiowing lemma to show
that we can efficiently construct optimum phylogenies apSen the pseudo-code:
Lemma 4.7:For a set of taxal/, if the number of non-isolated vertices of the associated
conflict graph ist, then an optimum phylogeri¥/;, can be constructed in tim@ (36’ + nm?),

wheres = penalty(M).
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Proof: We use the approach described by Gusfield and Bansal (seerS&cof [16])
that relies on the Decomposition Optimality Theorem forureent mutations. We first construct
the conflict graph and identify the non-trivial connectedngmnents of it in timeD(nm?). Let
k; be the set of characters associated with componelite compute the Steiner minimum
tree T; for character sek;. The remaining conflict-free characters @h\ U;x; can be added
by contracting eacll; to vertices and solving the perfect phylogeny problem ushugfield’s
linear time algorithm [14].

Sincepenalty(M) = s, there are at most+t + 1 distinct bit strings defined over character
setU;x;. The Steiner space is bounded By since| U; ;| = t. Using the Dreyfus-Wagner
recursion [22] the total run-time for solving all Steineeérinstances i€ (351'2"). [ |

Lemma 4.8:The algorithm described solves the BNPP problem in ti{és? + gnm?) with
probability at leas8—.

Proof: For a set of taxalM; € L (Step 3, Figure 4), using Lemma 4.7 an optimum
phylogeny can be constructed in tini&3%:6' + nm?) wheres; = penalty(M;) andt; is the
number of non-isolated vertices in the conflict graphidf. We know that}"; s; < ¢ (since
penalty(l) < ¢q) and}, t; < ¢ (stopping condition of thevhi | e loop). Therefore, the total
time to reconstruct optimum phylogenies for all; € L is bounded byO(187 + nm?). The
running time for the while loop is bounded y(gnm?). Therefore the total running time of
the algorithm isO (187 + gnm?). Combining Lemmas 4.2 and 4.6, the total probability that al
guesses performed by the algorithm is correct is at [ga&t [ |

Lemma 4.9:The algorithm described above can be derandomized to ruimia ® (727 +
8Inm?).

Proof: It is easy to see that Step 2c can be derandomized by explallipgssible states
for the unfixed characters. Since there are at mastfixed characters throughout the execution,
there are2? possibilities for the states.

However, Step 2a cannot be derandomized naively. We usesthaitjue of bounded search
tree [6] to derandomize it efficiently. We select an arbitreertexv from U; N (M;). We explore
both the possibilities on whether mutates once or multiple times. We can associate a search
(binary) tree with the execution of the algorithm, where reaode of the tree represents a
selectionv from U; N (M;). One child edge represents the execution of the algorittsmnaimgu

mutates once and the other assumingutates multiple times. In the execution whermutates
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multiple times, we select a different vertex framN (M) and again explore both paths. The
height of this search tree can be bounde®ppecause at mogtcharacters can mutate multiple
times. The path of heigl#y in the search tree is an interleavingg€haracters that mutate once
andq characters that mutate multiple times. Therefore, the gizbe search tree is bounded by
49,

Combining the two results, the algorithm can be derandodnizesolving at mosg? different
instances of Step 3 while traversing the while Iadgimes for a total running time ab(1447+
8nm?). This is, however, an over-estimate. Consider any itemadibthe while loop whenl/,
is replaced with\/0 and M 1. If a state in characteris unfixed and therefore guessed, we know
that there are two associated mutations of charadteiboth A/0 and M 1. Therefore at iteration
i, if ¢/ states are unfixed, therenalty(M0)+ penalty(M1) < penalty(M;)— ¢,. At the end
of the iteration we can reduce the valueqafised in Step 2 by, since the penalty has reduced
by ¢;. Intuitively this implies that if we perform a total of guesses (or enumerations) at Step
2c, then at Step 3 we only need to solve Steiner treeg -ery’ characters. The additional cost
27 that we incur results in reducing the running time of Step ®ta89-7 + gnm?). Therefore
the total running time i€ (727 + 8%nm?). |

D. Improving the Run Time Bounds

In Lemma 4.9, we showed that the guesses performed at Stdpt2emseudo-code in Figure 4
do not affect the overall running time. We can also estaldishade-off along similar lines for
Step 2a that can reduce the theoretical run-time bounds. ddeamalyze the details of such a
trade-off in the following lemma:

Lemma 4.10:The algorithm presented above runs in timé17 + 87nm?).

Proof:

For the sake of this analysis, we can declare each charactes in either a ‘marked’ state
or an ‘unmarked’ state. At the beginning of the algorithmi,thé characters are ‘unmarked’.
As the algorithm proceeds, we will mark characters to ingichat the algorithm has identified
them as mutating more than once’iti

We will then examine two parameters,and~, which specify the progress made by the de-
randomized algorithm in either identifying multiply muteg characters or reducing the problem

to sub-problems of lower total penalty. Consider the sethafractersS such that for allk € S,
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character is unmarked and there exists matfix such that mutates more than onceiry; . We
define parametes to be|S|. Parametep, intuitively, refers to the number of characters mutating
more than once (within treesy; ) that have not been identified yet. Parametedenotes the
sum of the penalties of the remaining matrices, v = Y-, penalty (M;).

Consider Step 2a of Figure 4, when the algorithm selectsackenc(v). After selectinge(v),
the algorithm proceeds to explore both cases wii{en either mutates once or multiple times
in 77, . In the first casepenalty (7}, ) decreases by at least 1. Therefofedecreases by at
least 1. In the second case, the algorithm has succesdfelhyified a multiple mutant. We now
proceed to mark charactefv), which reduces by 1 and leaves unchanged.

If the main loop at Step 3 terminates, then the algorithm fiogemal Steiner trees using
the Dreyfus-Wagner recursion and the run-time is bounded8yusing Lemma 4.7 as before.

Therefore, the running time of this portion of our algoritlwan be expressed as:

T(v,p) < max{18",T(y — 1,p) + T(y,p— 1) + 1}

FunctionT'(v, p) can be upper-bounded by *1(19/17)7*1. We can verify this by induction.

The right-side of the above equation is:
max{187,187(19/17)** + 187*1(19/17)" + 1}
= max{187,187(19/17)*(19/17 + 18) + 1}
< max{187,187(19/17)*(19/17 + 19)}
= 187" (19/17)7*!

Since we know that < ¢ andp < ¢, we can bound’(q, q) = O(20.129). Therefore, we can
improve the run-time bound for the complete algorithm((20.127 + 8nm?). [ |

We note that further improvements may be achievable in jge@adbr moderate; by pre-
processing possible Steiner tree instances. If all Steier problem instances on tlyecube
are solved in a pre-processing step, then our running timddadepend only on the number of
iterations of the while loop, which i©(87nm?). Such pre-processing would be impossible to
perform with previous methods. Alternate algorithms folvew Steiner trees may be faster in

practice as well.
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V. EXPERIMENTS

We tested both algorithms using a selection of non-recom@piDNA sequences. These include
mitochondrial DNA samples from two human populations [2&] a chimpanzee population [27],
Y chromosome samples from human [19] and chimpanzee pomsd®7], and a bacterial DNA
sample [21]. Such non-recombining data sources provideod tgst of the algorithms’ ability to
perform inferences in situations where recurrent mutasdhe probable source of any deviation
from the perfect phylogeny assumption.

We implemented variants of both algorithms. The simple rlgomn was derandomized and
used along with a standard implementation of the DreyfuggWa routine. For the FPT algo-
rithm, we implemented the randomized variant described/@hsing an optimized Dreyfus-
Wagner routine. The randomized algorithm takes two pararsei and p, where ¢ is the
imperfectness ang is the maximum probability that the algorithm has failed talfan optimal
solution of imperfectnesg. On each random trial, the algorithm tallies the probabibt failure
of each random guess, allowing it to calculate an upper baumthe probability that that trial
failed to find an optimal solution. It repeats random triat$illthe accumulated failure probability
across all trials is below the threshotd An error threshold of 1% was used for the present
study.

The results are summarized in Table |. Successive columriBeotable list the source of
the data, the input size, the optimal penajtythe parsimony score of the resulting tree, the
run times of both of our algorithms in seconds, and the nunobérials the randomized FPT
algorithm needed to reach a 1% error bound. All run times ntegoare based on execution
on a 2.4 GHz Intel P4 computer with 1 Gb of RAM. One data poihe human mtDNA
sample from the Buddhist population, was omitted from th&ults of the simple algorithm
because it failed to terminate after 20 minutes of executidhother instances were solved
optimally by the simple algorithm and all were solved by taedomized FPT algorithm. The
randomized variant of the FPT algorithm in all but one cagmicantly outperformed the
derandomized simple algorithm in run time. This result thaty reflect the superior asymptotic
performance of the FPT algorithm in general, the perforreaadvantage of the randomized
versus the deterministic variants, and the advantage ofra tighly optimized Dreyfus-Wagner

subroutine. The randomized algorithm also generally nédde fewer trials to reach a high
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probability of success than would be expected from the #texa error bounds, suggesting that
those bounds are quite pessimistic for realistic data Betth implementations, however, appear
efficient for biologically realistic data sets with moderamperfection.

We can compare the quality of our solutions to those prodocethe same data sets by other
methods. Our methods produced trees of identical parsiracone to those derived by tipar s
program from thePHYLI P package [10]. However while we can guarantee optimalityhef t
returned resultgpar s does not provide any guarantee on the quality of the treete(Mt our
preliminary paper [23] incorrectly stated thadér s produced an inferior tree on the chimpanzee
mMtDNA data set.) Our methods also yielded identical outputtie chimpanzee Y chromosome

data to a branch-and-bound method used in the paper in whathdata was published [27].

TABLE |

EMPIRICAL RESULTS ON ACOLLECTION OF REAL SNP \ARIATION DATA SETS

Description Rows q | Pars.| Run Run trials
x Cols Score| time — | time

Simple | — FPT
(secs) (secs)
mtDNA, genus| 24x1041 2 | 63 0.59 0.14 25
Pan [27]
chr Y, genus Pan 15x98 | 1| 99 0.33 0.02 12
[27]
Bacterial DNA | 17x15107 | 96 0.47 4.61 262

sequence [21]

HapMap chr Y,| 150x49| 1| 16 0.3 0.02 16

4 ethnic groups

[19]

MtDNA, Humans| 13x48 | 3| 30 0.61 0.28 117
(Muslims) [28]

mtDNA, Humans| 26x48 | 7| 43 — 18.44 | 1026

(Buddhists) [28]

VI. CONCLUSIONS

We have presented two new algorithms for inferring optimedmperfect binary phylogenies.

The algorithms substantially improve on the running timésaoy previous methods for the
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BNPP problem. This problem is of considerable practicaresgt for phylogeny reconstruction
from SNP data. Furthermore, our algorithms are easily impleted, unlike previous theoretical
algorithms for this problem. The algorithms can also prevgliaranteed optimal solutions in
their derandomized variants, unlike popular fast hewsstor phylogeny construction. Exper-
iments on several non-recombining variation data sets faker shown the methods to be
generally extremely fast on real-world data sets typicahoke for which one would apply the
BNPP problem in practice. Our algorithms perform in practstbstantially better than would
be expected from their worst case run time bounds, with botlvipg practical for at least
some problems witly as high as seven. The FPT algorithm in its randomized vashotvs

generally superior practical performance to the simplerdlgm. In addition, the randomized
algorithm appears to find optimal solutions for these data isefar fewer trials than would be
predicted from the worst-case theoretical bounds. Everd#terministic variant of the simple
algorithm, though, finds optimal solutions in under one séctor all but one example. The
algorithms presented here thus represent the first prhotiethods for provably optimal near-

perfect phylogeny inference from biallelic variation data
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