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Abstract

Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While

excellent heuristic methods are available for many variants of this problem, new advances in phylogeny

inference will be required if we are to be able to continue to make effective use of the rapidly growing

stores of variation data now being gathered. In this paper, we present two integer linear programming

(ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation

data. One method uses a flow-based formulation that can produce exponential numbers of variables

and constraints in the worst case. The method has, however, proven extremely efficient in practice on

datasets that are well beyond the reach of the available provably efficient methods, solving several large

mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times

competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes

that the problem can be solved with a polynomial-sized ILP. We further present a web server developed

based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a

front end to a database of precomputed phylogenies spanningthe human genome.
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I. INTRODUCTION

Phylogeny construction, or the inference of evolutionary trees from some form of population

variation data, is one of the oldest and most intensively studied problems in computational

biology. Yet it remains far from solved. The problem has become particularly acute for the special

case of intraspecies phylogenetics, or tokogenetics, in which we wish to build evolutionary trees

among individuals in a single species. In part, the persistence of the problem reflects its basic

computational difficulty. The problem in most reasonable variants is formally NP hard [1] and

thus has no known efficient solution. The continuing relevance of phylogeny inference algorithms

also stems from the fact that the data sets to be solved have been getting increasingly large in

both population sizes and numbers of variations examined. The genomic era has led to the

identification of vast numbers of variant sites for human populations [2], [3], as well as various

other complex eukaryotic organisms [4], [5], [6]. Large-scale resequencing efforts are now under

way to use such sites to study population histories with precision never previously possible [7].

Even more vast data sets are available for microbial and viral genomes. As a result, methods

that were adequate even a few years ago may no longer be suitable today.

In this work, we focus on the inference of intraspecies phylogenies on binary genetic variation

data, which is of particular practical importance because of the large amount of binary SNP data

now available. The binary intraspecies phylogeny problem has traditionally been modeled by the

minimum Steiner tree problem on binary sequences, a classicNP hard problem [1]. Some special

cases of the problem are efficiently solvable, most notably the case ofperfect phylogenies, in

which each variant site mutates only once within the optimaltree [8], [9], [10]. However, real

data will not, in general, conform to the perfect phylogeny assumption. The standard in practice is

the use of sophisticated heuristics that will always produce a tree but cannot guarantee optimality

(e.g., [11], [12], [13]). Some theoretical advances have recently been made in the efficient solution

of near-perfect phylogenies, those that deviate only by a fixed amount from the assumptionof

perfection [14], [15], [16], [17]. These methods can provide provably efficient solutions in many

instances, but still struggle with some moderate-size datasets in practice. As a result, some recent

attention has turned to integer linear programming (ILP) methods [18]. ILPs provide provably

optimal solutions and while they do not provide guaranteed run-time bounds, they may have

practical run times far better than those of the provably efficient methods.
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In the present work, we develop two ILP formulations to solvethe most parsimonious phylo-

genetic tree problem on binary sequences. These methods findprovably optimal trees from real

binary sequence data, much like the prior theoretical methods and unlike the prevailing heuristic

methods. Practical run time is, however, substantially lower than that of the existing provably

efficient theoretical methods, allowing us to tackle largerand more difficult datasets. Below,

we formalize the problem solved, present our methods, and establish their practical value on a

selection of real variation data sets. We further document aweb server providing open access to

this ILP method and serving as a front-end to a database of local phylogenies inferred throughout

the autosomal human genome. This work provides a platform for more extensive empirical studies

of variation patterns on genomic scales than were previously possible and may also help lay

the groundwork for more sophisticated optimization methods that are likely to be needed in the

future.

II. DEFINITIONS

We will assume that the input to the problem is a haplotype matrix H where each row

corresponds to a haploid sequence of a taxon and each column corresponds to a binary marker

such as a Single Nucleotide Polymorphism (SNP). The inputH can therefore be viewed as an

n×m binary matrix.

Definition 1: A phylogenyT for input I is a tree where each vertex represents a binary

string in {0, 1}m and all the input sequences are represented inT . The lengthof T is the sum

of the Hamming distances between all the adjacent vertices.The problem of constructing the

most parsimonious (optimal) phylogeny is to find the phylogeny T ∗ such thatlength(T ∗) is

minimized.

Definition 2: A phylogenyT for inputI with m varying sites isq-near-perfect (orq-imperfect)

if length(T ) = m + q.

The problem of reconstructing phylogenies is closely related to theSteiner Tree Problem,

a well studied problem in combinatorial optimization (for asurvey and applications, see [19],

[20]). Given a graphG = (V, E) and a set ofterminalsin V , the problem is to find the smallest

subgraph ofG such that there is a path between any pair of terminals.

The problem can be related to the phylogeny construction problem as follows. Let graphG be

them-cube defined on verticesV = {0, 1}m and edgesE = {(u, v) ∈ V ×V :
∑

i |ui−vi| = 1}.
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The vertices are binary strings of lengthm and an edge connects two vertices if and only if

their Hamming distance is 1. LetVT ⊆ V be the set of species corresponding to the rows of

input matrixH. The maximum parsimony problem is then equivalent to the minimum Steiner

tree problem on underlying graphG with terminal verticesVT . Even in this restricted setting,

the Steiner tree problem has been shown to be NP-complete [21]. However, the phylogeny

reconstruction problem when the optimal phylogeny isq-near-perfect can be solved in time

polynomial in n and m when q = O(log(poly(n, m))) [17]. If q is very large, though, such

algorithms do not perform well. Moreover, these algorithmsuse a sub-routine that solves the

Steiner tree problem onm-cubes when the dimensions are small. Therefore, improvingthe

existing solutions for the general problem will also improve the running time for the restricted

cases.

III. PREPROCESSING

We now describe a set of preprocessing steps that can substantially reduce the size of the

input data without affecting the final output.

A. Reducing the set of possible Steiner vertices

The complexity of solving the Steiner tree problem in general graphs is a consequence of

the exponentially many possible subsets that can be chosen as the final set of Steiner vertices

in the most parsimonious phylogeny. Therefore, an important component of any computational

solution to the Steiner tree problem is to eliminate vertices that cannot be present in any optimal

tree. We describe an approach that has been used to eliminatesuch vertices when the underlying

graph is them-cube.

For input graphH and columnc of H, the split c(0)|c(1) defined byc is a partition of the

taxa into two sets, wherec(0) is the set of taxa with value0 in columnc andc(1) is the set of

taxa with value1 in columnc. This forms a partition of the taxa sincec(0) ∪ c(1) is the set of

all taxa andc(0) ∩ c(1) is empty. Each ofc(0) and c(1) is called ablock of c. Buneman used

the blocks of binary taxa to introduce a graph, now called theBuneman graphB(H), which

captures structural properties of the optimal phylogeny [22]. We will explain the generalization

of this graph due to Barthélemy [23]. Each vertex of the Buneman graph is anm-tuple of blocks

[c1(i1), c2(i2), . . . cm(im)] (ij = 0 or 1 for each1 ≤ j ≤ m), with one block for each column and
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function findBuneman (VT )

1) let λ← VT ; let v ∈ λ

2) bunemanNeighbor( λ, v)

function bunemanNeighbor( λ, v)

1) for all j ∈ {1, . . . , m}

a) let v′ ← v; v′

j ← cj(1− ij)

b) if v′ is Buneman andv′ /∈ λ then

i) λ← λ ∪ {v′}

ii) bunemanNeighbor( λ, v′)

Fig. 1. Finding the Buneman graph in polynomial time

such that each pair of blocks has nonempty intersection (cj(ij)∩ck(ik) 6= ∅ for all 1 ≤ j, k ≤ m).

There is an edge between two vertices inB(H) if and only if they differ in exactly one block.

Buneman graphs are very useful because of the following theorem.

Theorem 3.1: [11], [24] For input matrixH, let T ∗

H denote the optimal phylogeny onH and

let B(H) denote the Buneman graph onH. If matrix H has binary values, then every optimal

phylogenyT ∗

H is a subgraph ofB(H).

Using the above theorem, our problem is now reduced to constructing the Buneman graph on

input H and solving our problem on underlying graphB(H). Ideally we would like to find the

Buneman graph in timeO(poly(k)) wherek is the number of vertices in the Buneman graph.

Note that this is output-sensitive. We first state the following theorem, which we will use to

show the Buneman graph can be generated efficiently.

Theorem 3.2: [24] The Buneman graphB(H) is connected for any input matrixH in which

all columns contain both states0, 1 and all pairs of columns are distinct.

To generate the graphB(H), let i1, i2, . . . im be the first taxon inH. Thenv = [c1(i1), c2(i2), . . . cm(im)]

is a vertex ofB(H). Now, there are several ways to generate the graphB(H). The pseudo-code

in Figure 1 begins withVT the set of vertices of theB(H) corresponding toH. The algorithm

then iteratively selects a vertexv and enumerates all the neighbors. For each vertex, the algorithm

checks if it obeys the conditions of the Buneman graph, if so it is added toλ and we recurse.

Lemma 3.3:The algorithm in Figure 1 finds the Buneman graphB(H) for the given input in
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time O(km) wherek is the number of vertices inB(H).

Proof: The algorithm begins with a vertexv ∈ B(H) and determinesB(H) in the depth-first

search order. By Theorem 3.2, the algorithm will visit all vertices inB(H). Step 1a iterates over

all m possible neighbors of vertexv in the m-cube which takes timeO(m). For each vertex

v ∈ B(H) function bunemanNeighbor is called usingv exactly once. Therefore if there arek

vertices inB(H), then the time spent to discover all ofB(H) is O(km). Note that instead of

using depth-first search, we could use breadth-first search or any other traversal order.

B. Decomposition into smaller problems

In addition to allowing us to reduce the set of possible Steiner vertices, we show how Theorem

3.1 also allows us to decompose the problem into independentsubproblems.

Definition 3: [25] A pair of columnsi, j conflict if the matrixH restricted toi, j contains all

four gametes(0, 0), (0, 1), (1, 0) and (1, 1). Equivalently, the columnsconflict if the projection

of H onto dimensionsi, j contains all four points of the square.

For input I, the structure of the conflicts ofI provides important information for building

optimal phylogenies forI. For example, it is well known that a perfect phylogeny exists if and

only if no pair of columns conflict [9], [24]. In order to represent the conflicts ofH, we construct

the conflict graphG, where the vertices ofG are columns ofH and the edges ofG correspond

to pairs of conflicting columns [26]. The following theorem has been stated previously without

proof [26]. For the sake of completeness, we provide an explicit proof using Theorem 3.1 and

ideas from Gusfield and Bansal [26]. We denote the matrixH restricted to set of columnsC as

C(H).

Theorem 3.4:Let χ denote the set of non-trivial connected components of conflict graphG

and letVisol denote the set of isolated vertices ofG. Then any optimal Steiner tree onH is a

union of optimal Steiner trees on the separate components ofG and length(T ∗

H) = |Visol| +
∑

C∈χ length(T
∗

C(H)).

Proof:

We use the fact that the optimal phylogeny is contained in theBuneman graph and show

that the connected components impose restrictions on the set of possible edges in the Buneman

graph. For two columnsc and c′, the blockc(i) is the dominated blockof c with respect to

the pair(c, c′) if block c(i) is contained in some block ofc′ (i.e., c(i) ⊂ c′(0) or c(i) ⊂ c′(1)).
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Similarly, block c(i) is thedominating blockof c with respect to the pair(c, c′) if c(i) contains

some block ofc′.

Let C be a component inχ ∪ Visol. If C is the only component inG, the theorem follows

immediately. Otherwise, we can reorder the columns so thatC consists of the firstk columns,

i.e.,c1, c2, . . . ck ∈ C andck+1, . . . cm 6∈ C. Recall that for any edge in the Buneman graphB(H),

its endpoints correspond to twom-tuples of blocks which differ in exactly one column; label this

edge by the column for which its endpoints differ. For any collection of columnsα1, α2, . . . αl, let

T ∗

H [α1, α2, . . . αl] denote the subgraph ofT ∗

H induced by the set of edges labeled byα1, α2, . . . αl.

We will characterize all edges in the Buneman graph labeled by columns inC using the following

lemma from Gusfield and Bansal [26].

Lemma 3.5: [26] For a columnci with i > k, ci does not conflict with any column in

connected componentC, and therefore, exactly one ofci(0) or ci(1) is the dominating block in

ci with respect toeverycolumn inC.

Let ci(li) (i > k) denote the set of dominating blocks ofci with respect toC. (It follows that

ci(1− li) is the dominated block inci with respect to every column inC).

Any vertex in the Buneman graph is anm-tuple of blocks which have pairwise nonempty

intersection. Therefore, an edgee labeled by a column inC, say c1, must have endpoints in

which the blocks of columnck+1, ck+2, . . . cm, intersect bothc1(0) and c1(1). This implies the

blocks ofck+1, ck+2, . . . cm are forced to be the dominating blocks with respect to componentC,

i.e., the lastm − k coordinates of the endpoints ofe must beck+1(lk+1), ck+2(lk+2) . . . cm(lm).

Let B(C) be the subgraph ofB(H) generated by the vertices whose lastm − k columns have

this form. Then any edge labeled by a column inC has both endpoints inB(C).

Lemma 3.6:T ∗

H [C] = T ∗

H [c1, c2, . . . ck] is an optimal Steiner tree onB(C).

Proof: We say that vertexv ∈ B(C) is a C-projected terminal vertex if there existsh ∈ H

with the same states asv in columns ofC. We first show that any two terminals inB(C) that are

C-projected vertices are connected by a path inT ∗

H [c1, c2, . . . ck]. Suppose otherwise and letv1

andv2 be two distinct vertices inB(C) which are not connected by such a path. By definition of

T ∗

H , there is a pathP in T ∗

H connectingv1 to v2; we can assume thatv1 andv2 are chosen so that

the length of pathP is minimized. Letd1, d2, . . . dl denote the edge labels ofP (by assumption,

at least one ofd1, d2, . . . dl is not in {c1, c2, . . . ck}). If for somei, we havedi ∈ {c1, c2, . . . ck},

then the endpointsu and w of di are in B(C), and eitherv1, u or w, v2 is a pair that is not
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connected inT ∗

H [c1, c2, . . . ck], a contradiction to the choice of verticesv1, v2.

Therefore, all edge labelsdi are in the set{ck+1, ck+2, . . . cm}. However, sincev1 andv2 are

in B(C), the finalm− k components of these two vertices areck+1(lk+1), ck+2(lk+2) . . . cm(lm)

by definition. Finally, since there are no edges inP labeled byc1, c2, . . . ck, it follows that v1

andv2 are equal in all components, a contradiction.

Therefore,T ∗

H [c1, c2, . . . ck] is a Steiner tree onB(C) where the set of terminal vertices are the

C-projected terminal vertices. Therefore ifT ∗

H is not optimal, then by removingT ∗

H [c1, c2, . . . ck]

from T ∗

H and replacing it by a tree of smaller cost, we obtain a Steinertree forH with smaller

cost thanT ∗

H , a contradiction.

The terminal vertices ofC(H) correspond toC-projected terminal vertices ofB(H). Therefore,

the above shows that for every connected componentC, T ∗

C(H) is a subgraph ofT ∗

H . Therefore,

length(T ∗

H) =
∑

C∈χ∪Visol

length(T ∗

C(H)) = |Visol|+
∑

C∈χ

length(T ∗

C(H))

This completes the proof of Theorem 3.4.

Our decomposition preprocessing step proceeds as follows.We first construct the conflict

graphG for input matrixH and identify the set of connected components ofG. We ignore the

columns corresponding to the isolated verticesVisol since they each contribute exactly one edge

to the final phylogeny. Then the columns corresponding to each connected componentc of χ

can be used independently to solve for the most parsimoniousphylogeny. Our problem is now

reduced to input matricesH consisting of a single non-trivial connected component.

C. Merging Rows and Columns

We now transform the input matrixH to possibly reduce its size. We can remove rows ofH

until all the rows are distinct since this does not change thephylogeny. Furthermore, we can

remove all the columns ofH that do not contain both states0 and1 since such columns will not

affect the size or the topology of the phylogeny. Finally, wewill assign weightswi to columni;

wi is initialized to 1 for alli. We iteratively perform the following operation: identifycolumnsi

andj that are identical (up to relabeling 0, 1), setwi := wi +wj and remove columnj from the

matrix. Notice that in the final matrixH, all pair-wise rows are distinct, all pair-wise columns

are distinct (even after relabeling 0, 1), every column contains both 0, 1 and all the columns
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have weightswi ≥ 1. From now, the input to the problem consists of the matrixH along with

vector w containing the weights for the columns ofH. We can now redefine the length of a

phylogeny using a weighted Hamming distance as follows.

Definition 4: The length of phylogenyT (V, E) is

length(T ) =
∑

(u,v)∈E

∑

i∈D(u,v) wi, whereD(u, v) is the set of indices whereu, v differ.

It is straight-forward to prove the correctness of the pre-processing step.

Lemma 3.7:The length of the optimal phylogeny on the pre-processed input is the same as

that of the original input.

IV. ILP FORMULATION

A common approach for studying the minimum Steiner tree problem is to use integer and

linear programming methods. For convenience, we will consider the more general problem of

finding a minimum Steiner tree for directed weighted graphsG (we represent an undirected graph

as a directed graph by replacing each edge by two directed edges). The input to the minimum

directed Steiner tree problem is a directed graph, a set of terminalsT and a specified root vertex

r ∈ T . The minimum Steiner tree is the minimum cost subgraph containing a directed path from

r to every other terminal inT .

For a subgraphS of graphG, we associate a vectorxS ∈ R
E, where edge variablexS

e takes

value1 if e appears in the subgraphS and 0 otherwise. A subset of verticesU ⊂ V is proper

if it is nonempty and does not contain all vertices. ForU ⊂ V , let δ+(U) denote the set of

edges(u, v) with u ∈ U , v 6∈ U and for a subset of edgesF ⊆ E, let x(F ) =
∑

e∈F xe. Finally,

edge-weights are given bywe ∈ RE.

The problem of finding a minimum directed Steiner tree rootedat r has previously been

examined with an ILP based on graph cuts [27], [28], [29]:

min
∑

u,v wu,vxu,v subject to (1)

x(δ+(U)) ≥ 1 ∀ properU ⊂ V with r ∈ U , T ∩ U 6= ∅ (2)

xu,v ∈ {0, 1} for all (u, v) ∈ E. (3)

Constraints (2) impose thatr has a directed path to all terminal verticesT . Note that in our

phylogenetic tree reconstruction problem, the underlyinggraph for the problem is the Buneman

graph and any input taxon can be chosen as the root vertexr. Since the Buneman graph may
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have an exponential number of vertices and edges with respect to the size of the input matrix

H, the running time for solving this integer program may be doubly-exponential inm in the

worst case.

We develop an alternative formulation based on multicommodity flows [29]. In this formu-

lation, one unit of flow is sent from the root vertex to every terminal vertex. Every terminal

vertex except the root acts as a sink for one unit of flow and theSteiner vertices have perfect

flow conservation. We use two types of variables,f t
u,v and su,v, for each edge(u, v) ∈ E.

The variablesf t
u,v are real valued and represent the amount of flow along edge(u, v) whose

destination is terminalt. Variablessu,v are binary variables denoting the presence or absence of

edge(u, v). The program is then the following:

min
∑

u,v wu,vsu,v subject to (4)

∑

v f t
u,v =

∑

v f t
v,u for all u 6∈ T (5)

∑

v f t
v,t = 1,

∑

v f t
t,v = 0,

∑

v f t
r,v = 1 for all t ∈ T (6)

0 ≤ f t
u,v ≤ su,v for all t ∈ T (7)

su,v ∈ {0, 1} for all e ∈ E. (8)

Constraints (5) impose the condition of flow conservation onthe Steiner vertices. Constraints

(6) impose the inflow/outflow constraints on terminals inT . Finally, constraints (7) impose the

condition that there is positive flow on an edge only if the edge is selected. By the max-flow

min-cut theorem, the projection of the solution onto the variabless satisfy constraints (2) [28].

The results will thus satisfy the following theorem:

Theorem 4.1:All integer variables of the above linear program are binaryand the solution to

the ILP gives a most parsimonious phylogenetic tree.

V. ALTERNATIVE POLYNOMIAL-SIZED ILP FORMULATION

The preceding ILP requires in the worst case an exponentially large number of variables and

constraints. It is, however, possible to formulate this problem with only a polynomial number

(in n and m) of variables and constraints. The exponential-sized ILP ultimately proved more

efficient in practice than the polynomial-sized ILP and we therefore used that one for our
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empirical validation. We nonetheless include this alternative formulation because it may prove

more promising for future improvements and extensions to more general cases of the Steiner

tree problem than will our exponential-sized ILP. Note thatpreprocessing operations B and C

above for the exponential-sized ILP will also be relevant tothe polynomial-sized ILP. We will

therefore assume we have performed those proprocessing steps and in particular that we have

eliminated all redundant rows and columns in the data set.

We will usehi,j, 1 ≤ i ≤ n to denote the state of theith taxon at sitej of the input matrix

H. Note that these are not variables of the linear program. We will use hi,j, n + 1 ≤ i ≤ 2n to

represent the state of theith Steiner vertex at sitej. We will therefore usenm such variables in

the ILP.

However,T ∗ might not usen Steiner vertices and therefore we associate binary variablespi

to denote the presence or absence of a Steiner vertexi.

We use2
(

2n

2

)

edge selection binary variablesei,j to denote the presence or absence of directed

edge(i, j). We want
∑

i,j ei,j to be the number of edges inT ∗.

To define the distance between a pair of vertices, we need someadditional auxiliary variables.

We use
(

n

2

)

m variablesci,j,k = |hi,k − hj,k| to denote whether verticesi, j differ at site k.

The absolute value for this constraint can be expressed as a linear equation. Now distance

ri,j =
∑m

k=1 wkci,j,k.

To define the objective, however, we need
∑

i,j ei,jri,j which is quadratic. We can instead

achieve the same result by defining the following linear constraint si,j ≥ ri,j − mwmax +

mwmaxei,j, wherewmax = maxi wi. Now the objective function is simply to minimize
∑

i,j si,j.

We, however, need additional constraints to ensure that theoutput is a tree and it connects all

the terminal vertices. First, we haveO(n2) constraints: for alli, j,
∑

k ci,j,k ≥ 1. We also have

2n integer variablesdi representing thedepthof a vertexi from the root (arbitrarily the first

row of H). We ensure that vertex a can connect to another vertex of thephylogeny only if it is

of depth one smaller with the constraints that for alli, j, yi,j − di + dj ≥ −1, yi,j + di − dj ≥

1, (2n + 1)ei,j + yi,j ≤ 2n + 1. Also,
∑

j ei,j + pi = 1 for all i to ensure that there exists only

one parent for every vertex (except the root). Finally the constraint
∑

i,j ei,j = n − 1 ensures,

that the set of edges selected forms a tree. We now have the following theorem. Putting these

components together results in the following ILP:
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min
∑

i,j si,j subject to (9)

ci,j,k ≥ hi,k − hj,k for all 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ m (10)

ci,j,k ≥ hj,k − hi,k for all 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ m (11)

ri,j =
∑m

k=1 wkci,j,k for all 1 ≤ i, j ≤ n, i 6= j (12)

si,j ≥ ri,j −mwmax + mwmaxei,j for all 1 ≤ i, j ≤ n, i 6= j (13)

∑

k ci,j,k ≥ 1 for all 1 ≤ i, j ≤ n, i 6= j (14)

yi,j − di + dj ≥ −1 for all 1 ≤ i, j ≤ n, i 6= j (15)

yi,j + di − dj ≥ 1 for all 1 ≤ i, j ≤ n, i 6= j (16)

(2n + 1)ei,j + yi,j ≤ 2n + 1 for all 1 ≤ i, j ≤ n, i 6= j (17)

∑

j ei,j + pi = 1 for all 1 ≤ i ≤ n (18)

∑

i,j ei,j = n− 1 (19)

We further constrain all variables to be non-negative and fixthe depth of the root node to be

zero.

Theorem 5.1:The above linear program uses polynomial number of variables and constraints

and the solution of the ILP is a most parsimonious phylogenetic tree.

Proof: We havenm variables coding unknown allele values for then Steiner nodes that

might be present in the phylogeny,(2n)(2n−1) edge selection variables identifying the edges in

the phylogeny,1
2
(n)(n−1)m auxiliary variables used to measure Hamming distances,1

2
(n)(n−1)

variables specifying the Hamming distances of selected edges only,2n depth variables,2n− 1

parent variables, and(2n)(2n − 1) auxiliary yij variables used in setting the depth constraints.

The total variable set therefore has sizeO(n2m).

We have2n(n − 1)m constraints for computing absolute values (lines 10-11),n(n − 1) for

determining edge costs between nodes (line 12),n(n − 1) for determining weights of selected

edges (line 13),n(n − 1) enforcing that all nodes are connected to the phylogeny (line 14),

3n(n − 1) for enforcing node depth constraints (lines 15-17),n for ensuring each node has a

parent (line 18), and one forcing the phylogeny to haven− 1 edges and thus to be a tree (line

19). The total number of constraints is therefore alsoO(n2m).
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The correctness of the program is established in the text above explaining its derivation.

VI. EMPIRICAL VALIDATION

Experience with both ILPs showed the exponential-sized oneto be generally the more efficient

in practice. This seems to be the case in practice as the LP relaxation of the exponential sized ILP

produces integer solutions or just requires a few rounding iterations. In contrast the polynomial

sized ILP contains integer variables that remain fractional and therefore require many relaxations

to be solved. We therefore used that variant for our empirical studies. We applied the ILP to

several sets of variation data chosen to span a range of data characteristics and computational

difficulties. We used only non-recombining data (Y chromosome, mitochondrial, and bacterial

DNA) because imperfection in non-recombining data is most likely to be explained by recurrent

mutations. We used two Y chromosome data sets: a set of all human Y chromosome data from

the HapMap [2] and a set of predominantly chimpanzee primatedata [30]. Several different

samples of mitochondrial DNA (mtDNA) were also included [31], [32], [33], [34]. Finally, we

analyzed a single bacterial sample [35].

The pre-processing and ILP formulation was performed in C++and solved using the Concert

callable library of CPLEX 10.0. In each case, the ILP was ableto find an optimal tree on the data

after preprocessing. We also used thepars program ofphylip , which attempts to heuristically

find the most parsimonious phylogeny.pars was run with default parameters. Empirical tests

were conducted on a 2.4 GHz Pentium 4 computer with 1G RAM, running Linux. We attempted

to use thepenny program ofphylip , which finds provably optimal solutions by branch-and-

bound, but it terminated in under 20 minutes only for the smallest mitochondrial data set and

was aborted by us after 20 minutes for all other tests.

We first used the mitochondrial data as a basic validation of the correctness of the methods and

the reasonableness of the maximum parsimony criterion on these data. The HVS-I and HVS-

II segments of the mitochondrial D-loop region have exceptionally high mutation rates [31],

providing a good test case of the ability of our algorithm to distinguish regions we would

expect to have perfect or near-perfect phylogenies from those expected to have highly imperfect

phylogenies. Figure 2 shows a scan of 201-site long windows across the complete 16569-site

mtDNA genome. Since the mtDNA is circular, the windows wrap around over the ends in
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Fig. 2. Imperfection of the most parsimonious phylogeny foroverlapping windows across the complete mitochondrial genome.

The x-axis shows the sites in their order along the genomic axis. The y-axis shows the imperfection for the window centered on

the corresponding site. The hyper variable D-loop region (1 . . . 577 and16028 . . . 16569) shows significantly larger imperfection.

the genome order. They-axis corresponds toimperfection, which is the number of recurrent

mutations in the most parsimonious phylogeny. The figure does indeed show substantially larger

phylogenies within the high mutation rate D-loop region (1 . . . 577 and16028 . . . 16569) than in

the low mutation rate coding regions, confirming the relevance of a parsimony metric for such

data sets.

We then ran the ILP on a collection of data sets to assess its efficiency. Figure 3 provides two

examples of most parsimonious phylogenies for data sets at opposite extremes of difficulty: an

mtDNA sample [31] with imperfection 21 (Fig. 3(a)) and the human Y chromosome sample, with

imperfection 1 (Fig. 3(b)). Table I presents the empirical run-time data for all of the datasets.

The columns ‘input before’ and ‘input after’ correspond to the size of the original input and

that after preprocessing (rows× columns). The table also provides the ILP size for each data

set (variables, constraints). Run times vary over several orders of magnitude and appear largely

insensitive to the actual sizes of the data sets. Rather, themajor determinant of run time appears

to be a dataset’s imperfection, i.e., the difference between the optimal length and the number of

variant sites. It has recently been shown that the phylogenyproblem under various assumptions

is fixed parameter tractable in imperfection [14], [15], [16], [17] possibly suggesting why it is a

critical factor in run time determination. Thepars program ofphylip , despite providing no

guarantees of optimality, does indeed find optimal phylogenies in all of the above instances. It
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(a)

(b)

Fig. 3. Examples of trees of varying levels of difficulty. Nodes labeled with numbers correspond to the numbered input

haplotypes, while those labeled A# correspond to inferred Steiner nodes. Edges are labeled with the site variations to which

they correspond. (a) Human mitochondrial data from Wirth etal. [31] (b) Human Y chromosome from HapMap [2]

is, however, slower than the ILP in most of these cases.

VII. ONLINE TOOL

In order to provide more general access to our methods, we have implemented a web server

based on our worst-case exponential-sized ILP. The server provides a front end to a an im-

plementation of the ILP in C++ using the CPLEX 10 libraries. We call the server SCan for

IMperfect Phylogenies (SCIMP). It can be accessed at

http://www.cs.cmu.edu/˜imperfect/index.html . There are two ways to use the

webserver, as explained below.
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input time(secs)

Data Set before after length our ILP pars ILP size

human chrY [2] 150× 49 14 × 15 16 0.02 2.55 (510, 697)

bacterial [35] 17 × 1510 12 × 89 96 0.08 0.06 (780, 995)

chimp mtDNA [30] 24 × 1041 19 × 61 63 0.08 2.63 (1480, 1982)

chimp chrY [30] 15 × 98 15 × 98 99 0.02 0.03 (736, 12012)

human mtDNA [31] 40 × 52 32 × 52 73 13.39 11.24 (55308, 62467)

human mtDNA [34] 395 × 830 34 × 39 53 53.4 712.95 (63070, 70673)

human mtDNA [32] 13 × 390 13 × 42 48 0.02 0.41 (1288, 1604)

human mtDNA [33] 44 × 405 27 × 39 43 0.09 0.59 (5264, 6636)

TABLE I

EMPIRICAL RUN-TIME RESULTS ON A SELECTION OF NON-RECOMBINING DATASETS.

Firstly, the users can input a haplotype variation data-set. These are simply a set ofn haplotype

sequences typed overm SNPs. As stated in the previous sections, this has to be phased data.

Therefore essentially the input is ann×m {0, 1} matrix.

Alternatively, the users can select any region of the genomeand provide the number of

contiguous SNPs to examine in that region. The user also needs to specify the population group

to use. The webserver currently has support for the Central European population (CEPH) and

Yoruba African population (YRI). The entire HapMap (phase II) phasing data is present in the

webserver’s backend database and this makes it easy for users to quickly examine and construct

phylogenies for any region of interest. Since the HapMap data for these two populations were

sequenced in trios, the number of phasing errors should be very small.

The webserver can be used in two different modes. As has been described until now, the

user can just request it to construct the most parsimonious phylogenetic tree and return the

topology, the parsimony score (number of mutations) and theimperfection (number of recurrent

mutations).

The webserver can also perform an imperfection scan. The user specifies the location and

size and additionally for this mode provides a window lengthw in the number of SNPs.

The webserver then slides this window across the genome and for each overlapping set of

w consecutive SNPs constructs a maximum parsimony phylogeny. The server returns to the user
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a plot of the imperfection (number of recurrent mutations) of each of these windows across the

entire region examined. It can further provide the maximum parsimony tree found within each

window.

In addition to providing a general interface to the phylogeny inference code, the server also

houses a precomputed database of maximum parsimony phylogenies that it constructed offline

for more than 3.7 million instances using the HapMap SNPs. Therefore, when users request to

see phylogenies that are present in this precomputed data-set (or while performing scans), the

results are returned as soon as they are fetched with no online solution required. This precomputed

databases currently has phylogenies for every continguousregion of up to 10 SNPs in all of

HapMap.

Figure 3 provides examples of the server output.

VIII. CONCLUSION

We have developed ILP formulations for optimally solving for the most parsimonious phy-

logeny using binary genome variation data. These methods fill an important practical need for

fast methods for generating provably optimal trees from large SNP variation datasets. This need

is not served well by the heuristic methods that are currently the standard for tree-building,

which generally work well in practice but cannot provide guarantees of optimality. More recent

theoretical methods that find provably optimal trees withindefined run-time bounds are inefficient

in practice without a fast sub-routine to solve the general problem on smaller instances. The

ILP approach allows extremely fast solutions of the easy cases while still yielding run-times

competitive with a widely used fast heuristic for hard instances. Such methods are likely to be

increasingly important as data sets accumulate on larger population groups and larger numbers

of variant sites.
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