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Abstract

Reconstruction of phylogenetic trees is a fundamental Ipmkin computational biology. While
excellent heuristic methods are available for many vasiafthis problem, new advances in phylogeny
inference will be required if we are to be able to continue keneffective use of the rapidly growing
stores of variation data now being gathered. In this paperpwmesent two integer linear programming
(ILP) formulations to find the most parsimonious phylogénétee from a set of binary variation
data. One method uses a flow-based formulation that can peoexponential numbers of variables
and constraints in the worst case. The method has, howewstemp extremely efficient in practice on
datasets that are well beyond the reach of the availableaptpefficient methods, solving several large
mtDNA and Y-chromosome instances within a few seconds avidgprovably optimal results in times
competitive with fast heuristics than cannot guarantearaity. An alternative formulation establishes
that the problem can be solved with a polynomial-sized ILE.fWther present a web server developed
based on the exponential-sized ILP that performs fast maxirparsimony inferences and serves as a

front end to a database of precomputed phylogenies spatimnguman genome.
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. INTRODUCTION

Phylogeny construction, or the inference of evolutionaegs$ from some form of population
variation data, is one of the oldest and most intensivelgistli problems in computational
biology. Yet it remains far from solved. The problem has lmeegarticularly acute for the special
case of intraspecies phylogenetics, or tokogenetics, ishwire wish to build evolutionary trees
among individuals in a single species. In part, the penmstsgteof the problem reflects its basic
computational difficulty. The problem in most reasonableards is formally NP hard [1] and
thus has no known efficient solution. The continuing releeaof phylogeny inference algorithms
also stems from the fact that the data sets to be solved hare dedting increasingly large in
both population sizes and numbers of variations examinég. genomic era has led to the
identification of vast numbers of variant sites for humanyapons [2], [3], as well as various
other complex eukaryotic organisms [4], [5], [6]. Largexecresequencing efforts are now under
way to use such sites to study population histories withipi@t never previously possible [7].
Even more vast data sets are available for microbial and ggaomes. As a result, methods
that were adequate even a few years ago may no longer belsuialy.

In this work, we focus on the inference of intraspecies pigitoes on binary genetic variation
data, which is of particular practical importance becaudsh®large amount of binary SNP data
now available. The binary intraspecies phylogeny problas thaditionally been modeled by the
minimum Steiner tree problem on binary sequences, a cld$zicard problem [1]. Some special
cases of the problem are efficiently solvable, most notdidydase ofperfect phylogeniesn
which each variant site mutates only once within the optitreg [8], [9], [10]. However, real
data will not, in general, conform to the perfect phylogesguanption. The standard in practice is
the use of sophisticated heuristics that will always predaitree but cannot guarantee optimality
(e.g., [11], [12], [13]). Some theoretical advances hacemdy been made in the efficient solution
of near-perfect phylogenieshose that deviate only by a fixed amount from the assumption
perfection [14], [15], [16], [17]. These methods can pr&vmrovably efficient solutions in many
instances, but still struggle with some moderate-size sitisin practice. As a result, some recent
attention has turned to integer linear programming (ILP}hwods [18]. ILPs provide provably
optimal solutions and while they do not provide guaranteeuitime bounds, they may have

practical run times far better than those of the provablycieifit methods.
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In the present work, we develop two ILP formulations to sdive most parsimonious phylo-
genetic tree problem on binary sequences. These methodprbimdbly optimal trees from real
binary sequence data, much like the prior theoretical nitlamd unlike the prevailing heuristic
methods. Practical run time is, however, substantiallyelotihan that of the existing provably
efficient theoretical methods, allowing us to tackle larged more difficult datasets. Below,
we formalize the problem solved, present our methods, atablesh their practical value on a
selection of real variation data sets. We further documemela server providing open access to
this ILP method and serving as a front-end to a database aff pdwylogenies inferred throughout
the autosomal human genome. This work provides a platforrméoe extensive empirical studies
of variation patterns on genomic scales than were prewopgssible and may also help lay
the groundwork for more sophisticated optimization methtight are likely to be needed in the

future.

[I. DEFINITIONS

We will assume that the input to the problem is a haplotyperisnatl where each row
corresponds to a haploid sequence of a taxon and each colomrmasgonds to a binary marker
such as a Single Nucleotide Polymorphism (SNP). The ifputan therefore be viewed as an
n x m binary matrix.

Definition 1: A phylogenyT' for input I is a tree where each vertex represents a binary
string in {0, 1} and all the input sequences are representetl.ifthe lengthof 7" is the sum
of the Hamming distances between all the adjacent vertitles. problem of constructing the
most parsimonious (optimal) phylogeny is to find the phylogé&™ such thatlength(7™) is
minimized.

Definition 2: A phylogenyT for input I with m varying sites ig;-near-perfect (og-imperfect)
if length(T) =m + q.

The problem of reconstructing phylogenies is closely eglato theSteiner Tree Problem
a well studied problem in combinatorial optimization (forsarvey and applications, see [19],
[20]). Given a graphG = (V, E) and a set oferminalsin V, the problem is to find the smallest
subgraph ofG such that there is a path between any pair of terminals.

The problem can be related to the phylogeny constructiohlpno as follows. Let grapky be
the m-cube defined on verticds = {0,1}" and edge¥ = {(u,v) € VXV : > |u;—v;| = 1}.
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The vertices are binary strings of length and an edge connects two vertices if and only if
their Hamming distance is 1. Lét; C V' be the set of species corresponding to the rows of
input matrix H. The maximum parsimony problem is then equivalent to theirmim Steiner
tree problem on underlying grapi with terminal vertices/’r. Even in this restricted setting,
the Steiner tree problem has been shown to be NP-compleie Hivever, the phylogeny
reconstruction problem when the optimal phylogenygisear-perfect can be solved in time
polynomial inn and m whenq = O(log(poly(n,m))) [17]. If ¢ is very large, though, such
algorithms do not perform well. Moreover, these algorithnse a sub-routine that solves the
Steiner tree problem om-cubes when the dimensions are small. Therefore, improtiieg
existing solutions for the general problem will also impeawe running time for the restricted

cases.

1. PREPROCESSING

We now describe a set of preprocessing steps that can stiyareduce the size of the

input data without affecting the final output.

A. Reducing the set of possible Steiner vertices

The complexity of solving the Steiner tree problem in gehgraphs is a consequence of
the exponentially many possible subsets that can be chasémedinal set of Steiner vertices
in the most parsimonious phylogeny. Therefore, an importamponent of any computational
solution to the Steiner tree problem is to eliminate vegitteat cannot be present in any optimal
tree. We describe an approach that has been used to elirsingtevertices when the underlying
graph is them-cube.

For input graphH and columnc of H, the split ¢(0)|c(1) defined byc is a partition of the
taxa into two sets, wherg0) is the set of taxa with valué in columnc and¢(1) is the set of
taxa with valuel in columnec. This forms a partition of the taxa sine€0) U ¢(1) is the set of
all taxa andc(0) N ¢(1) is empty. Each of:(0) and¢(1) is called ablock of ¢. Buneman used
the blocks of binary taxa to introduce a graph, now called Bm@eman graph3(H), which
captures structural properties of the optimal phylogerg}.[BVe will explain the generalization
of this graph due to Barthélemy [23]. Each vertex of the Bnae graph is am-tuple of blocks

[c1(i1), c2(i2), - . . em(im)] (i; = 0 or 1 for eachl < j < m), with one block for each column and
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function findBuneman (V)
1) letA «— Vp;letv e A
2) bunemanNeighbor( A, v)
function bunemanNeighbor( A, v)
1) forallje{1,...,m}
a) letv' « v; v} « c;(1 — ij)
b) if v’ is Buneman and’ ¢ X\ then
) A= AU{v'}
i) bunemanNeighbor( X\,

Fig. 1. Finding the Buneman graph in polynomial time

such that each pair of blocks has nonempty intersectig, {Ncy (i) # 0 forall 1 < j, & < m).
There is an edge between two verticessif¥) if and only if they differ in exactly one block.
Buneman graphs are very useful because of the followingréineo

Theorem 3.1: [11], [24] For input matrixH, let T}, denote the optimal phylogeny di and
let B(H) denote the Buneman graph éh If matrix H has binary values, then every optimal
phylogenyT’; is a subgraph of5(H).

Using the above theorem, our problem is now reduced to ageistg the Buneman graph on
input H and solving our problem on underlying grapti/). Ideally we would like to find the
Buneman graph in timé&(poly(k)) wherek is the number of vertices in the Buneman graph.
Note that this is output-sensitive. We first state the follgyvtheorem, which we will use to
show the Buneman graph can be generated efficiently.

Theorem 3.2: [24] The Buneman grapB(H) is connected for any input matri¥ in which
all columns contain both statés1 and all pairs of columns are distinct.

To generate the graph( H ), letiy, io, . . . i,, be the first taxon iff. Thenv = [c1(i1), ca(ia), - . . Cm(im)]
is a vertex ofB(H). Now, there are several ways to generate the gi3(). The pseudo-code
in Figure 1 begins with/ the set of vertices of th&(H) corresponding td7. The algorithm
then iteratively selects a vertexand enumerates all the neighbors. For each vertex, theithigor
checks if it obeys the conditions of the Buneman graph, iftse added to\ and we recurse.

Lemma 3.3:The algorithm in Figure 1 finds the Buneman grapii{) for the given input in
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time O(km) wherek is the number of vertices iB(H).

Proof: The algorithm begins with a vertexc B(H) and determine8(H) in the depth-first
search order. By Theorem 3.2, the algorithm will visit alttiees inB(H). Step la iterates over
all m possible neighbors of vertex in the m-cube which takes timé&(m). For each vertex
v € B(H) function bunemanNeighbor is called usingv exactly once. Therefore if there ake
vertices inB(H), then the time spent to discover all 8{ H) is O(km). Note that instead of

using depth-first search, we could use breadth-first searemy other traversal order. [ |

B. Decomposition into smaller problems

In addition to allowing us to reduce the set of possible Steuertices, we show how Theorem
3.1 also allows us to decompose the problem into indepersidagroblems.

Definition 3: [25] A pair of columnsi, j conflictif the matrix H restricted ta, j contains all
four gameteg0,0), (0,1),(1,0) and (1, 1). Equivalently, the columnsonflict if the projection
of H onto dimensiong, j contains all four points of the square.

For input 7, the structure of the conflicts af provides important information for building
optimal phylogenies for. For example, it is well known that a perfect phylogeny existand
only if no pair of columns conflict [9], [24]. In order to rement the conflicts off, we construct
the conflict graphg, where the vertices of are columns off and the edges af correspond
to pairs of conflicting columns [26]. The following theorerashbeen stated previously without
proof [26]. For the sake of completeness, we provide an exgiroof using Theorem 3.1 and
ideas from Gusfield and Bansal [26]. We denote the mdirixestricted to set of columnS' as
C(H).

Theorem 3.4:Let y denote the set of non-trivial connected components of atrgliaphg
and letV;,, denote the set of isolated vertices @f Then any optimal Steiner tree di is a
union of optimal Steiner trees on the separate componeng arfd length(7};) = |Visa| +
> cey Length(1 ) ).

Proof:

We use the fact that the optimal phylogeny is contained inBheeman graph and show
that the connected components impose restrictions on thef p@ssible edges in the Buneman
graph. For two columng and ¢, the blocke(i) is the dominated blockof ¢ with respect to

the pair(c, ¢) if block ¢(i) is contained in some block of (i.e., c(i) C ¢(0) or ¢(i) C ¢(1)).
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Similarly, block¢(7) is thedominating blockof ¢ with respect to the paifc, ¢’) if ¢(i) contains
some block ofc'.

Let C' be a component iny U V.. If C' is the only component igj, the theorem follows
immediately. Otherwise, we can reorder the columns so@habnsists of the firskt columns,
i.e.,c1,C,...c € Candeg,y,...c, ¢ C. Recall that for any edge in the Buneman gréii#/ ),
its endpoints correspond to two-tuples of blocks which differ in exactly one column; lableist
edge by the column for which its endpoints differ. For anylexion of columnsy;, as, . .. ay, let
T} |aq, as, ... oq] denote the subgraph @f; induced by the set of edges labeleddy aws, . . . a;.
We will characterize all edges in the Buneman graph labeyezbhumns inC' using the following
lemma from Gusfield and Bansal [26].

Lemma 3.5: [26] For a columnc; with i > k, ¢; does not conflict with any column in
connected componeidt, and therefore, exactly one of(0) or ¢;(1) is the dominating block in
¢; with respect toeverycolumn inC.

Let ¢;(1;) ( > k) denote the set of dominating blocks @fwith respect taC. (It follows that
¢;(1 —1;) is the dominated block im; with respect to every column i@).

Any vertex in the Buneman graph is an-tuple of blocks which have pairwise nonempty
intersection. Therefore, an edgelabeled by a column i, say ¢;, must have endpoints in
which the blocks of columny 1, ¢ia, . . . ¢, iNtersect bothr; (0) and¢;(1). This implies the
blocks ofcgy 1, cio, - . . ¢, are forced to be the dominating blocks with respect to coraptfi,
i.e., the lastn — k coordinates of the endpoints efmust becy 1 (lk+1), ckro(lki2) - - - Cm(ln)-
Let B(C) be the subgraph oB(H) generated by the vertices whose last- & columns have
this form. Then any edge labeled by a columnCirhas both endpoints iBB(C').

Lemma 3.6:7}[C] = T};[c1, ca, . .. cx] IS an optimal Steiner tree o(C).

Proof: We say that vertex € B(C) is a C-projected terminal vertex if there existse H
with the same states asin columns ofC'. We first show that any two terminals (') that are
C-projected vertices are connected by a patfT'jfici, s, . . . ¢x]. Suppose otherwise and let
andwv, be two distinct vertices i8(C') which are not connected by such a path. By definition of
T}, there is a patlP in T}; connectingy; to ve; we can assume that andwv, are chosen so that
the length of pathP is minimized. Letd;, ds, . . . d; denote the edge labels &f (by assumption,
at least one ofl;, ds,...d; is not in{cy, ca, ...c}). If for somei, we haved; € {c;,co, ...k},

then the endpoints and w of d; are in B(C), and eitherv;,u or w, v, is a pair that is not
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connected inl};[cy, co, . .. cx], @ contradiction to the choice of vertices, vs.

Therefore, all edge label§ are in the sef ¢y 1, cryo, - .. cn}. However, sincey andv, are
in B(C), the finalm — k components of these two vertices @€ (lx+1), ckr2(lks2) - - - Cm(lm)
by definition. Finally, since there are no edgesHnlabeled bycy, s, . . . ¢4, it follows that v,
and v, are equal in all components, a contradiction.

Therefore T} [c1, co, . . . ¢i] is a Steiner tree o(C') where the set of terminal vertices are the
C-projected terminal vertices. ThereforeTif, is not optimal, then by removing; [c1, ca, . . . ¢x]
from T}, and replacing it by a tree of smaller cost, we obtain a Stetieer for H with smaller
cost thanT};, a contradiction. [ |

The terminal vertices af’( H ) correspond t@’-projected terminal vertices &f( H ). Therefore,

the above shows that for every connected compo@éﬂfg(m is a subgraph of };. Therefore,

length(Ty) = Z length(1¢p) = [Visall + Z length(1¢ )

CexUVisor Cex

This completes the proof of Theorem 3.4. [ |

Our decomposition preprocessing step proceeds as folldvesfirst construct the conflict
graphg for input matrix H and identify the set of connected componentg;jofe ignore the
columns corresponding to the isolated vertiégs, since they each contribute exactly one edge
to the final phylogeny. Then the columns corresponding td eamnnected componentof y
can be used independently to solve for the most parsimomby®geny. Our problem is now

reduced to input matriced consisting of a single non-trivial connected component.

C. Merging Rows and Columns

We now transform the input matrikl to possibly reduce its size. We can remove rowgiof
until all the rows are distinct since this does not changephyogeny. Furthermore, we can
remove all the columns aoff that do not contain both statésand1 since such columns will not
affect the size or the topology of the phylogeny. Finally, wié assign weightsw; to columni;

w; 1S initialized to 1 for alli. We iteratively perform the following operation: identi€plumns:
and; that are identical (up to relabeling 0, 1), set:= w; +w; and remove columgi from the
matrix. Notice that in the final matriX/, all pair-wise rows are distinct, all pair-wise columns

are distinct (even after relabeling O, 1), every column am# both 0, 1 and all the columns
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have weightsw; > 1. From now, the input to the problem consists of the matfixalong with
vector w containing the weights for the columns &f. We can now redefine the length of a
phylogeny using a weighted Hamming distance as follows.

Definition 4: The length  of phylogenyT'(V, E) is
length(T) = >, er Dicp(uy) Wi WhereD(u, v) is the set of indices where, v differ.

It is straight-forward to prove the correctness of the pi@epssing step.

Lemma 3.7:The length of the optimal phylogeny on the pre-processedtigpthe same as

that of the original input.

IV. ILP FORMULATION

A common approach for studying the minimum Steiner tree lgrabis to use integer and
linear programming methods. For convenience, we will abersthe more general problem of
finding a minimum Steiner tree for directed weighted graphsve represent an undirected graph
as a directed graph by replacing each edge by two directegsgdghe input to the minimum
directed Steiner tree problem is a directed graph, a setrmwiinals7 and a specified root vertex
r € T. The minimum Steiner tree is the minimum cost subgraph @anga directed path from
r to every other terminal if".

For a subgraptt of graphG, we associate a vectar’ € R”, where edge variable® takes
valuel if e appears in the subgraghand0 otherwise. A subset of verticds C V' is proper
if it is nonempty and does not contain all vertices. EorC V, let §*(U) denote the set of
edges(u,v) with v € U, v ¢ U and for a subset of edgds C E, let 2(F) = __ . z.. Finally,
edge-weights are given hy, ¢ R”.

The problem of finding a minimum directed Steiner tree rooé¢d has previously been
examined with an ILP based on graph cuts [27], [28], [29]:

min ZM Wy Ty SuUbject to Q)
(6T (U)) > 1 VproperU c Vwithr e U, TNU # ) (2)
Ty € {0,1} for all (u,v) € E. (3)

Constraints (2) impose that has a directed path to all terminal vertic€s Note that in our
phylogenetic tree reconstruction problem, the underlgraph for the problem is the Buneman

graph and any input taxon can be chosen as the root vert8ince the Buneman graph may
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have an exponential number of vertices and edges with respehe size of the input matrix
H, the running time for solving this integer program may be ldptexponential inm in the
worst case.

We develop an alternative formulation based on multicomitgdtbws [29]. In this formu-
lation, one unit of flow is sent from the root vertex to everymmal vertex. Every terminal
vertex except the root acts as a sink for one unit of flow andSteener vertices have perfect
flow conservation. We use two types of variablg$, and s, ,, for each edggu,v) € E.

The variablesf; , are real valued and represent the amount of flow along ¢dge) whose
destination is terminal. Variabless, , are binary variables denoting the presence or absence of

edge(u,v). The program is then the following:

min D i WaiwSuw subject to (4)
S fl = f for all u g T (5)
o=, fle=02,ff,=1 forallteT (6)

0< fiy < Suw forallteT (7)

Suw € {0,1} foralle € E. (8)

Constraints (5) impose the condition of flow conservatiortlos Steiner vertices. Constraints
(6) impose the inflow/outflow constraints on terminalsZinFinally, constraints (7) impose the
condition that there is positive flow on an edge only if the eedlg selected. By the max-flow
min-cut theorem, the projection of the solution onto thealdess satisfy constraints (2) [28].
The results will thus satisfy the following theorem:

Theorem 4.1:All integer variables of the above linear program are bireamg the solution to

the ILP gives a most parsimonious phylogenetic tree.

V. ALTERNATIVE POLYNOMIAL-SIZED ILP FORMULATION

The preceding ILP requires in the worst case an exponegntaije number of variables and
constraints. It is, however, possible to formulate thisbpeo with only a polynomial number
(in n andm) of variables and constraints. The exponential-sized Ilifnately proved more

efficient in practice than the polynomial-sized ILP and weréfore used that one for our

January 3, 2008 DRAFT



11

empirical validation. We nonetheless include this altBweaformulation because it may prove
more promising for future improvements and extensions teengeneral cases of the Steiner
tree problem than will our exponential-sized ILP. Note thegprocessing operations B and C
above for the exponential-sized ILP will also be relevanthie polynomial-sized ILP. We will
therefore assume we have performed those proprocessiog abel in particular that we have
eliminated all redundant rows and columns in the data set.

We will useh; ;,1 < i < n to denote the state of th&" taxon at sitej of the input matrix
H. Note that these are not variables of the linear program. Weuse £; ;,n+1 < i < 2n to
represent the state of thé& Steiner vertex at sitg. We will therefore usewmn such variables in
the ILP.

However,T* might not usen Steiner vertices and therefore we associate binary vasabl
to denote the presence or absence of a Steiner vertex

We use2(%') edge selection binary variables; to denote the presence or absence of directed
edge(i,j). We want}_, . e; ; to be the number of edges fifi".

To define the distance between a pair of vertices, we need addigonal auxiliary variables.
We use (})m variablesc; jx = |hix — hj| to denote whether vertices ; differ at site k.
The absolute value for this constraint can be expressed asear lequation. Now distance
Tij = Dje1 WkCijik-

To define the objective, however, we negd ; e; jr;; which is quadratic. We can instead
achieve the same result by defining the following linear tamst s, ; > r;; — MWyar +
MWpaz€ij, Wherew,,,, = max; w;. Now the objective function is simply to minimizEm Si

We, however, need additional constraints to ensure thabukgut is a tree and it connects all
the terminal vertices. First, we hav&n?) constraints: for all,j, >, ¢;;r > 1. We also have
2n integer variablesi; representing thelepthof a vertexi from the root (arbitrarily the first
row of H). We ensure that vertex a can connect to another vertex giltileogeny only if it is
of depth one smaller with the constraints that forall, v;; — d; +d; > —1,y,; +d; — d; >
L,(2n+1)e;; +vi; < 2n+ 1. Also, Zj e;; +p; = 1 for all 7 to ensure that there exists only
one parent for every vertex (except the root). Finally thasd:mintzm e;; = n — 1 ensures,
that the set of edges selected forms a tree. We now have tlogvifod) theorem. Putting these

components together results in the following ILP:
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min Em‘ Sij subject to (9)

Cijk > hig —hjx forall1<i,j<n,i#j,1<k<m (10)

Cijk > hjx— hig forall 1<i,j<n,i#j,1<k<m (11)

Tij = 9 gy WkCijk forall1 <i,j<n,i#j (12)

Sij > Tij — MWmag + MWagei; forall 1 <ij<n,i#j (13)
Y owCik > 1 forall1 <i,j<n,i#j (14)

i —di +d; > —1 forall 1 <i,j<n,i#j (15)
g+ di—d; > 1 forall 1 <i,j<n,i#j (16)
2n+1)e;+y; <2n+1 forall1<i,j<n,i#j (17)
Zjem-%—pi:l forall1<i:<n (18)
dijCij=n—1 (19)

We further constrain all variables to be non-negative andHhe«depth of the root node to be
zero.

Theorem 5.1:The above linear program uses polynomial number of varsabtel constraints
and the solution of the ILP is a most parsimonious phylogeriege.

Proof: We havenm variables coding unknown allele values for theSteiner nodes that
might be present in the phyloger(n)(2n — 1) edge selection variables identifying the edges in
the phylogeny; (n)(n—1)m auxiliary variables used to measure Hamming distanges(n—1)
variables specifying the Hamming distances of selecte@sdngly,2n depth variables2n — 1
parent variables, an(Pn)(2n — 1) auxiliary y;; variables used in setting the depth constraints.
The total variable set therefore has s2é:?m).

We have2n(n — 1)m constraints for computing absolute values (lines 10-h1y — 1) for
determining edge costs between nodes (line &2),— 1) for determining weights of selected
edges (line 13)n(n — 1) enforcing that all nodes are connected to the phylogeny (lid),
3n(n — 1) for enforcing node depth constraints (lines 15-17)or ensuring each node has a
parent (line 18), and one forcing the phylogeny to have 1 edges and thus to be a tree (line

19). The total number of constraints is therefore al§@?m).
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The correctness of the program is established in the texteabgplaining its derivation.
[

VI. EMPIRICAL VALIDATION

Experience with both ILPs showed the exponential-sizedtoie generally the more efficient
in practice. This seems to be the case in practice as the aRatedn of the exponential sized ILP
produces integer solutions or just requires a few roundi@aiions. In contrast the polynomial
sized ILP contains integer variables that remain fractiana therefore require many relaxations
to be solved. We therefore used that variant for our empistadies. We applied the ILP to
several sets of variation data chosen to span a range of Hatacateristics and computational
difficulties. We used only non-recombining data (Y chronmaso mitochondrial, and bacterial
DNA) because imperfection in non-recombining data is miasiy to be explained by recurrent
mutations. We used two Y chromosome data sets: a set of albhofnichromosome data from
the HapMap [2] and a set of predominantly chimpanzee prindata [30]. Several different
samples of mitochondrial DNA (mtDNA) were also included J[3[B2], [33], [34]. Finally, we
analyzed a single bacterial sample [35].

The pre-processing and ILP formulation was performed in @mé solved using the Concert
callable library of CPLEX 10.0. In each case, the ILP was #ébliénd an optimal tree on the data
after preprocessing. We also used pla@s program ofphylip , which attempts to heuristically
find the most parsimonious phylogemars was run with default parameters. Empirical tests
were conducted on a 2.4 GHz Pentium 4 computer with 1G RAMjyingLinux. We attempted
to use thepenny program ofphylip , which finds provably optimal solutions by branch-and-
bound, but it terminated in under 20 minutes only for the $msalmitochondrial data set and
was aborted by us after 20 minutes for all other tests.

We first used the mitochondrial data as a basic validatioh@tbrrectness of the methods and
the reasonableness of the maximum parsimony criterion esetldata. The HVS-I and HVS-
Il segments of the mitochondrial D-loop region have exaaplly high mutation rates [31],
providing a good test case of the ability of our algorithm tstidguish regions we would
expect to have perfect or near-perfect phylogenies froraalexpected to have highly imperfect
phylogenies. Figure 2 shows a scan of 201-site long windamssa the complete 16569-site

MtDNA genome. Since the mtDNA is circular, the windows wrapuad over the ends in
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Fig. 2. Imperfection of the most parsimonious phylogenydeerlapping windows across the complete mitochondriabgen
The x-axis shows the sites in their order along the genonik ke y-axis shows the imperfection for the window cerdesa

the corresponding site. The hyper variable D-loop region (577 and16028 . . . 16569) shows significantly larger imperfection.

the genome order. Thg-axis corresponds tamperfection which is the number of recurrent
mutations in the most parsimonious phylogeny. The figures dogeed show substantially larger
phylogenies within the high mutation rate D-loop regidn .( 577 and 16028 . .. 16569) than in
the low mutation rate coding regions, confirming the releeaaf a parsimony metric for such
data sets.

We then ran the ILP on a collection of data sets to assesdiitgeaty. Figure 3 provides two
examples of most parsimonious phylogenies for data setp@isite extremes of difficulty: an
mtDNA sample [31] with imperfection 21 (Fig. 3(a)) and thenan Y chromosome sample, with
imperfection 1 (Fig. 3(b)). Table | presents the empiricat-time data for all of the datasets.
The columns ‘input before’ and ‘input after’ correspond te tsize of the original input and
that after preprocessing (rows columns). The table also provides the ILP size for each data
set (variables, constraints). Run times vary over seveddre of magnitude and appear largely
insensitive to the actual sizes of the data sets. Rathem#jer determinant of run time appears
to be a dataset’s imperfection, i.e., the difference betwtbe optimal length and the number of
variant sites. It has recently been shown that the phylogeolglem under various assumptions
is fixed parameter tractable in imperfection [14], [15], J1J&7] possibly suggesting why it is a
critical factor in run time determination. Thgars program ofphylip , despite providing no

guarantees of optimality, does indeed find optimal phylagem all of the above instances. It
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(b)

Fig. 3. Examples of trees of varying levels of difficulty. Ndlabeled with numbers correspond to the numbered input
haplotypes, while those labeled A# correspond to inferrein®r nodes. Edges are labeled with the site variationshichw

they correspond. (a) Human mitochondrial data from Wirtlale{31] (b) Human Y chromosome from HapMap [2]

is, however, slower than the ILP in most of these cases.

VII. ONLINE TOOL

In order to provide more general access to our methods, we ingpiemented a web server
based on our worst-case exponential-sized ILP. The semefides a front end to a an im-
plementation of the ILP in C++ using the CPLEX 10 librariese \6all the server SCan for
IMperfect Phylogenies (SCIMP). It can be accessed at
http://www.cs.cmu.edu/"imperfect/index.html . There are two ways to use the

webserver, as explained below.
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input time(secs)
Data Set before after length | our ILP | pars ILP size
human chrY [2] 150 x 49 | 14 x 15 | 16 0.02 2.55 | (510, 697)
bacterial [35] 17 x 1510 | 12 x 89 | 96 0.08 0.06 | (780, 995)
chimp mtDNA [30] | 24 x 1041 | 19 x 61 | 63 0.08 2.63 | (1480, 1982)
chimp chrY [30] 15 x 98 15 x 98 | 99 0.02 0.03 | (736, 12012)
human mtDNA [31]| 40 x 52 32x52 | 73 13.39 | 11.24 | (55308, 62467)
human mtDNA [34] | 395 x 830 | 34 x 39 | 53 53.4 712.95| (63070, 70673)
human mtDNA [32]| 13 x 390 | 13 x 42 | 48 0.02 0.41 | (1288, 1604)
human mtDNA [33]| 44 x 405 | 27 x 39 | 43 0.09 0.59 | (5264, 6636)

TABLE |

EMPIRICAL RUN-TIME RESULTS ON A SELECTION OF NONRECOMBINING DATASETS

Firstly, the users can input a haplotype variation datafdetse are simply a set afhaplotype
sequences typed ovet SNPs. As stated in the previous sections, this has to be ¢ldega.
Therefore essentially the input is anx m {0, 1} matrix.

Alternatively, the users can select any region of the gename provide the number of
contiguous SNPs to examine in that region. The user alsosrteespecify the population group
to use. The webserver currently has support for the Cenwedgean population (CEPH) and
Yoruba African population (YRI). The entire HapMap (phadephasing data is present in the
webserver’s backend database and this makes it easy far tasquickly examine and construct
phylogenies for any region of interest. Since the HapMaja diat these two populations were
sequenced in trios, the number of phasing errors should kyesveall.

The webserver can be used in two different modes. As has beseribed until now, the
user can just request it to construct the most parsimonitwy$ogenetic tree and return the
topology, the parsimony score (number of mutations) andriperfection (number of recurrent
mutations).

The webserver can also perform an imperfection scan. The gpezifies the location and
size and additionally for this mode provides a window lengthin the number of SNPs.
The webserver then slides this window across the genome @néaich overlapping set of

w consecutive SNPs constructs a maximum parsimony phylodémyserver returns to the user
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a plot of the imperfection (hnumber of recurrent mutationfs¢ach of these windows across the
entire region examined. It can further provide the maximuarspnony tree found within each
window.

In addition to providing a general interface to the phylogéarference code, the server also
houses a precomputed database of maximum parsimony phyésgiat it constructed offline
for more than 3.7 million instances using the HapMap SNPe®rdfore, when users request to
see phylogenies that are present in this precomputed daf@swhile performing scans), the
results are returned as soon as they are fetched with ncesdintion required. This precomputed
databases currently has phylogenies for every continguegisn of up to 10 SNPs in all of
HapMap.

Figure 3 provides examples of the server output.

VIIl. CONCLUSION

We have developed ILP formulations for optimally solving tbe most parsimonious phy-
logeny using binary genome variation data. These methddanfilmportant practical need for
fast methods for generating provably optimal trees frorgda®NP variation datasets. This need
is not served well by the heuristic methods that are cuwyethit standard for tree-building,
which generally work well in practice but cannot provide gudees of optimality. More recent
theoretical methods that find provably optimal trees witteéfined run-time bounds are inefficient
in practice without a fast sub-routine to solve the generablem on smaller instances. The
ILP approach allows extremely fast solutions of the easyesasghile still yielding run-times
competitive with a widely used fast heuristic for hard imst@s. Such methods are likely to be
increasingly important as data sets accumulate on largeulgtion groups and larger numbers

of variant sites.
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